Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 27(10): 1146-1156, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34109749

RESUMO

AIMS: CHD4 gene, encoding chromodomain helicase DNA-binding protein 4, is a vital gene for fetal development. In this study, we aimed to explore the association between CHD4 variants and idiopathic epilepsy. METHODS: Trios-based whole-exome sequencing was performed in a cohort of 482 patients with childhood idiopathic epilepsy. The Clinical Validity Framework of ClinGen and an evaluating method from five clinical-genetic aspects were used to determine the association between CHD4 variants and epilepsy. RESULTS: Four novel heterozygous missense mutations in CHD4, including two de novo mutations (c.1597A>G/p.K533E and c.4936G>A/p.E1646K) and two inherited mutations with co-segregation (c.856C>G/p.P286A and c.4977C>G/p.D1659E), were identified in four unrelated families with eight individuals affected. Seven affected individuals had sinus arrhythmia. From the molecular sub-regional point of view, the missense mutations located in the central regions from SNF2-like region to DUF1087 domain were associated with multisystem developmental disorders, while idiopathic epilepsy-related mutations were outside this region. Strong evidence from ClinGen Clinical Validity Framework and evidences from four of the five clinical-genetic aspects suggested an association between CHD4 variants and epilepsy. CONCLUSIONS: CHD4 was potentially a candidate pathogenic gene of childhood idiopathic epilepsy with arrhythmia. The molecular sub-regional effect of CHD4 mutations helped explaining the mechanisms underlying phenotypic variations.


Assuntos
Arritmia Sinusal/genética , Epilepsia/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Adolescente , Criança , Estudos de Coortes , Eletroencefalografia , Feminino , Variação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Fenótipo , Sequenciamento do Exoma
2.
Front Oncol ; 11: 633233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981601

RESUMO

Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4-the core component of the nucleosome remodeling and deacetylase (NuRD) complex-may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either 'deleterious', 'probably/possibly damaging' or as 'high/medium pathogenic'; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA