Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(4): 295-307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207123

RESUMO

The role of autophagy in pulmonary microvascular endothelial cells (PMVECs) is controversial in LPS-induced acute lung injury (ALI). Mixed lineage kinase domain-like pseudokinase (MLKL) has recently been reported to maintain cell survival by facilitating autophagic flux in response to starvation rather than its well-recognized role in necroptosis. Using a mouse PMVEC and LPS-induced ALI model, we showed that in PMVECs, MLKL was phosphorylated (p-MLKL) and autophagic flux was accelerated at the early stage of LPS stimulation (1-3 h), manifested by increases in concentrations of lipidated MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 ß; LC3-II), decreases in concentrations of SQSTM1/p62 (sequestosome 1), and fusion of the autophagosome and lysosome by pHluorin-mKate2-human LC3 assay, which were all reversed by either MLKL inhibitor or siRNA MLKL. In mice, the inhibition of MLKL increased vascular permeability and aggravated mouse ALI upon 3-hour LPS stimulation. The p-MLKL induced by short-term LPS formed multimers to facilitate the closure of the phagophore by HaloTag-LC3 autophagosome completion assay. The charged multivesicular body protein 2A (CHMP2A) is essential in the process of phagophore closure into the nascent autophagosome. In agreement with the p-MLKL change, CHMP2A concentrations markedly increased during 1-3-hour LPS stimulation. CHMP2A knockdown blocked autophagic flux upon LPS stimulation, whereas CHMP2A overexpression boosted autophagic flux and attenuated mouse ALI even in the presence of MLKL inhibitor. We propose that the activated MLKL induced by short-term LPS facilitates autophagic flux by accelerating the closure of the phagophore via CHMP2A, thus protecting PMVECs and alleviating LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Células Endoteliais , Humanos , Lesão Pulmonar Aguda/metabolismo , Autofagia/genética , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Lipopolissacarídeos , Pulmão/metabolismo , Proteínas Quinases/genética
2.
Viruses ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38140530

RESUMO

HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.


Assuntos
HIV-1 , HIV-1/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Liberação de Vírus/fisiologia
3.
Adv Sci (Weinh) ; 10(34): e2304329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870216

RESUMO

PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.


Assuntos
Miócitos Cardíacos , Traumatismo por Reperfusão , Camundongos , Animais , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , RNA de Interação com Piwi , Necroptose/genética , Metilação , Traumatismo por Reperfusão/metabolismo , Fatores Ativadores da Transcrição/metabolismo
4.
Dev Cell ; 58(23): 2746-2760.e5, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37683632

RESUMO

The sequence of morphological intermediates that leads to mammalian autophagosome formation and closure is a crucial yet poorly understood issue. Previous studies have shown that yeast autophagosomes evolve from cup-shaped phagophores with only one closure point, and mammalian studies have inferred that mammalian phagophores also have single openings. Our superresolution microscopy studies in different human cell lines in conditions of basal and nutrient-deprivation-induced autophagy identified autophagosome precursors with multifocal origins that evolved into unexpected finger-like phagophores with multiple openings before becoming more spherical structures. Compatible phagophore structures were observed with whole-mount and conventional electron microscopy. This sequence of events was visualized using advanced SIM2 superresolution live microscopy. The finger-shaped phagophore apertures remained open when ESCRT function was compromised. The efficient closure of autophagic structures is important for their release from the recycling endosome. This has important implications for understanding how autophagosomes form and capture various cargoes.


Assuntos
Autofagossomos , Autofagia , Animais , Humanos , Endossomos/metabolismo , Linhagem Celular , Fagocitose , Mamíferos
5.
Transl Cancer Res ; 11(9): 3108-3127, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36237250

RESUMO

Background: The genes involved in the endosomal sorting required for transport complex (ESCRT)-III pathway is a protective mechanism that delays cell death by repairing damaged plasma membranes. We aimed to evaluate if targeting ESCRT-III genes may be used as biomarkers for predicting the clinical outcomes of endometrial carcinoma (EC). Methods: Transcriptome RNA sequence (RNA-seq) data and genomic information of EC samples were obtained from The Cancer Genome Atlas (TCGA). The expression level, pathological relationship, pathway alterations, mutation, functional enrichment, associations with tumor infiltrating lymphocytes (TILs), and survival information of ESCRT-III genes including charged multivesicular body protein 2A (CHMP2A), CHMP2B, CHMP3, CHMP4B, CHMP4C, CHMP5, CHMP5, and CHMP7 in EC and normal tissues were explored through multiple datasets analysis. Results: Our study demonstrated that CHMP2B, CHMP3, CHMP4B, CHMP5, CHMP5, and CHMP7 were significantly lower, whereas CHMP2A and CHMP4C were significantly higher in EC tissue than in normal tissue. All ESCRT pathway genes were significantly differentially expressed between tumor grades 2 and 3 and were positively correlated with each other. Except for CHMP5, the other seven ESCRT pathway genes were the most frequently mutated genes in the EC samples among all cancer types. Moreover, CHMP2A and CHMP7 had better prognostic potential in EC. CHMP2A, CHMP4B, and CHMP7 were significantly correlated with all four molecular subtypes in TCGA. Increased expression of CHMP2A and CHMP7 and decreased expression of CHMP4B were observed in EC samples than in serous carcinoma type samples. Furthermore, they were associated with tumor stages 1 and 2 and good survival outcomes for EC. Functional analysis revealed that the ESCRT-III genes were involved in the biological process (BP) of the membrane budding and multivesicular body (MVB) pathway; CHMP2A and CHMP7 participated in the ESCRT and ESCRT III complex disassembly, while CHMP5 was involved in ESCRT and ESCRT III complex assembly. Conclusions: Mutations in CHMP2A and CHMP7 correspond to a better prognostic potential in EC. Upregulation of CHMP2A and CHMP7 and downregulation of CHMP4B are good prognostic indicators of the histological type, early tumor grade, and promising survival markers, thus becoming potential biomarkers and therapeutic targets for EC.

6.
J Neuroinflammation ; 18(1): 257, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740380

RESUMO

BACKGROUND: Activation of the absent in melanoma 2 (AIM2) inflammasome and impaired autophagosome clearance in neurons contribute significantly to cardiac arrest and return of spontaneous circulation (CA-ROSC) injury, while the mechanism by which the AIM2 inflammasome is regulated and relationship between the processes remain poorly understood. Recently, charged multivesicular body protein 2A (CHMP2A), a subunit of endosomal sorting complex required for transport (ESCRT), was shown to regulate phagophore closure, and its depletion led to the accumulation of autophagosomes and induced cell death. Here, we investigated whether CHMP2A-mediated autophagy was an underlying mechanism of AIM2-associated inflammation after CA-ROSC and explored the potential link between the AIM2 inflammasome and autophagy under ischemic conditions. METHODS: AIM2 inflammasome activation and autophagic flux in the cortex were assessed in the CA-ROSC rat model. We injected LV-Vector or LV-CHMP2A virus into the motor cortex with stereotaxic coordinates and divided the rats into four groups: Sham, CA, CA+LV-Vector, and CA+LV-CHMP2A. Neurologic deficit scores (NDSs), balance beam tests, histopathological injury of the brain, and expression of the AIM2 inflammasome and proinflammatory cytokines were analyzed. RESULTS: AIM2 inflammasome activation and increased interleukin 1 beta (IL-1ß) and IL-18 release were concurrent with reduced levels of CHMP2A-induced autophagy in CA-ROSC rat neurons. In addition, silencing CHMP2A resulted in autophagosome accumulation and decreased autophagic degradation of the AIM2 inflammasome. In parallel, a reduction in AIM2 contributed to autophagy activation and mitigated oxygen-glucose deprivation and reperfusion (OGD-Rep)-induced inflammation. Notably, CHMP2A overexpression in the cortex hindered neuroinflammation, protected against ischemic brain damage, and improved neurologic outcomes after CA. CONCLUSIONS: Our results support a potential link between autophagy and AIM2 signaling, and targeting CHMP2A may provide new insights into neuroinflammation in the early phase during CA-ROSC.


Assuntos
Isquemia Encefálica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Parada Cardíaca/complicações , Doenças Neuroinflamatórias/metabolismo , Animais , Autofagia/fisiologia , Isquemia Encefálica/etiologia , Parada Cardíaca/metabolismo , Doenças Neuroinflamatórias/etiologia , Ratos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA