Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 71(20): 6396-6407, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32794554

RESUMO

Adventitious root branching is vital to plant growth and regeneration, but the regulation of this process remains unclear. We therefore investigated how ginsenosides regulate adventitious root branching in Panax ginseng. Cell proliferation and adventitious root branching were decreased in the presence of ginsenoside Rb1 and a high concentration of ginsenoside Re, but increased when treating with a low concentration of Re. Moreover, the exogenous application of a synthetic dodeca-amino acid peptide that has a CLAVATA3/EMBRYO SURROUNDING REGION-related (CLE) motif corresponding to PgCLE45 retarded root growth in both ginseng and Arabidopsis. The root Re levels and the expression of the DDS, CYP716A47, and CYP716A53 genes that encode enzymes involved in ginsenoside synthesis were decreased in the presence of PgCLE45. The expression profiles of PgWOX and PgCLE genes were determined to further investigate the CLE-WOX signaling pathway. The levels of PgWOX11 transcripts showed an inverse pattern to PgCLE45 transcripts. Using yeast one-hybrid assay, EMSA, and ChIP assay, we showed that PgWOX11 bound to the PgCLE45 promoter, which contained the HD motif. Transient expression assay showed that PgWOX11 induced the expression of PgCLE45 in adventitious roots, while PgCLE45 suppressed the expression of PgWOX11. These results suggest that there is a negative feedback regulation between PgCLE45 and PgWOX11. Taken together, these data show that ginsenosides regulate adventitious root branching via a novel PgCLE45-PgWOX11 regulatory loop, providing a potential mechanism for the regulation of adventitious root branching.


Assuntos
Ginsenosídeos , Panax , Raízes de Plantas
2.
Curr Biol ; 30(9): 1626-1638.e3, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220322

RESUMO

The plant vasculature is an essential adaptation to terrestrial growth. Its phloem component permits efficient transfer of photosynthates between source and sink organs but also transports signals that systemically coordinate physiology and development. Here, we provide evidence that developing phloem orchestrates cellular behavior of adjacent tissues in the growth apices of plants, the meristems. Arabidopsis thaliana plants that lack the three receptor kinases BRASSINOSTEROID INSENSITIVE 1 (BRI1), BRI1-LIKE 1 (BRL1), and BRL3 ("bri3" mutants) can no longer sense brassinosteroid phytohormones and display severe dwarfism as well as patterning and differentiation defects, including disturbed phloem development. We found that, despite the ubiquitous expression of brassinosteroid receptors in growing plant tissues, exclusive expression of the BRI1 receptor in developing phloem is sufficient to systemically correct cellular growth and patterning defects that underlie the bri3 phenotype. Although this effect is brassinosteroid-dependent, it cannot be reproduced with dominant versions of known downstream effectors of BRI1 signaling and therefore possibly involves a non-canonical signaling output. Interestingly, the rescue of bri3 by phloem-specific BRI1 expression is associated with antagonism toward phloem-specific CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 45 (CLE45) peptide signaling in roots. Hyperactive CLE45 signaling causes phloem sieve element differentiation defects, and consistently, knockout of CLE45 perception in bri3 background restores proper phloem development. However, bri3 dwarfism is retained in such lines. Our results thus reveal local and systemic effects of brassinosteroid perception in the phloem: whereas it locally antagonizes CLE45 signaling to permit phloem differentiation, it systemically instructs plant organ formation via a phloem-derived, non-cell-autonomous signal.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/farmacologia , Floema/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia
3.
EMBO Rep ; 18(8): 1367-1381, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28607033

RESUMO

Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root-active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co-receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3-mediated CLE45 signaling. Moreover, protophloem-specific CRN expression complements resistance of the crn mutant to root-active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Membrana/metabolismo , Floema/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Peptídeos/genética , Peptídeos/metabolismo , Floema/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais
4.
Development ; 142(8): 1437-46, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25813544

RESUMO

Protophloem is a specialized vascular tissue in growing plant organs, such as root meristems. In Arabidopsis mutants with impaired primary root protophloem differentiation, brevis radix (brx) and octopus (ops), meristematic activity and consequently overall root growth are strongly reduced. Second site mutation in the protophloem-specific presumed phosphoinositide 5-phosphatase cotyledon vascular pattern 2 (CVP2), but not in its homolog CVP2-like 1 (CVL1), partially rescues brx defects. Consistent with this finding, CVP2 hyperactivity in a wild-type background recreates a brx phenotype. Paradoxically, however, while cvp2 or cvl1 single mutants display no apparent root defects, the root phenotype of cvp2 cvl1 double mutants is similar to brx or ops, although, as expected, cvp2 cvl1 seedlings contain more phosphatidylinositol-4,5-biphosphate. Thus, tightly balanced phosphatidylinositol-4,5-biphosphate levels appear essential for proper protophloem differentiation. Genetically, OPS acts downstream of phosphatidylinositol-4,5-biphosphate levels, as cvp2 mutation cannot rescue ops defects, whereas increased OPS dose rescues cvp2 cvl1 defects. Finally, all three mutants display higher density and accelerated emergence of lateral roots, which correlates with increased auxin response in the root differentiation zone. This phenotype is also created by application of peptides that suppress protophloem differentiation, clavata3/embryo surrounding region 26 (CLE26) and CLE45. Thus, local changes in the primary root protophloem systemically shape overall root system architecture.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Floema/citologia , Floema/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Floema/crescimento & desenvolvimento , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA