RESUMO
The protein encoded by COQ7 is required for CoQ10 synthesis in humans, hydroxylating 3-demethoxyubiquinol (DMQ10) in the second to last steps of the pathway. COQ7 mutations lead to a primary CoQ10 deficiency syndrome associated with a pleiotropic neurological disorder. This study shows the clinical, physiological, and molecular characterization of four new cases of CoQ10 primary deficiency caused by five mutations in COQ7, three of which have not yet been described, inducing mitochondrial dysfunction in all patients. However, the specific combination of the identified variants in each patient generated precise pathophysiological and molecular alterations in fibroblasts, which would explain the differential in vitro response to supplementation therapy. Our results suggest that COQ7 dysfunction could be caused by specific structural changes that affect the interaction with COQ9 required for the DMQ10 presentation to COQ7, the substrate access to the active site, and the maintenance of the active site structure. Remarkably, patients' fibroblasts share transcriptional remodeling, supporting a modification of energy metabolism towards glycolysis, which could be an adaptive mechanism against CoQ10 deficiency. However, transcriptional analysis of mitochondria-associated pathways showed distinct and dramatic differences between patient fibroblasts, which correlated with the extent of pathophysiological and neurological alterations observed in the probands. Overall, this study suggests that the combination of precise genetic diagnostics and the availability of new structural models of human proteins could help explain the origin of phenotypic pleiotropy observed in some genetic diseases and the different responses to available therapies.
RESUMO
Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients.
Assuntos
Doenças Mitocondriais , Ubiquinona , Masculino , Humanos , Pré-Escolar , Ubiquinona/uso terapêutico , Mutação/genética , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Ataxia/genéticaRESUMO
Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ.
Assuntos
Membranas Mitocondriais , Ubiquinona , Humanos , Ubiquinona/química , Membranas Mitocondriais/metabolismo , Proteínas de Transporte , LipídeosRESUMO
Coenzyme Q10 (CoQ10) is necessary as electron transporter in mitochondrial respiration and other cellular functions. CoQ10 is synthesized by all cells and defects in the synthesis pathway result in primary CoQ10 deficiency that frequently leads to severe mitochondrial disease syndrome. CoQ10 is exceedingly hydrophobic, insoluble, and poorly bioavailable, with the result that dietary CoQ10 supplementation produces no or only minimal relief for patients. We studied a patient from Turkey and identified and characterized a new mutation in the CoQ10 biosynthetic gene COQ7 (c.161G > A; p.Arg54Gln). We find that unexpected neuromuscular pathology can accompany CoQ10 deficiency caused by a COQ7 mutation. We also show that by-passing the need for COQ7 by providing the unnatural precursor 2,4-dihydroxybenzoic acid, as has been proposed, is unlikely to be an effective and safe therapeutic option. In contrast, we show for the first time in human patient cells that the respiratory defect resulting from CoQ10 deficiency is rescued by providing CoQ10 formulated with caspofungin (CF/CoQ). Caspofungin is a clinically approved intravenous fungicide whose surfactant properties lead to CoQ10 micellization, complete water solubilization, and efficient uptake by cells and organs in animal studies. These findings reinforce the possibility of using CF/CoQ in the clinical treatment of CoQ10-deficient patients.
RESUMO
BACKGROUND/PURPOSE: Genetic and environmental factors play significant roles in the pathogenesis of Parkinson's disease (PD). Recently, 17 novel risk loci of PD were identified in a meta-analysis of genome-wide association study (GWAS) in the European populations. In order to clarify if these risk loci are associated with PD in Taiwanese population, we conducted a case-control study including 14 of the novel risk loci and analyzed the genetic distribution and allele frequency. METHODS: A total of 2798 subjects were recruited in this study. Genotyping was performed in 672 PD patients and 609 healthy controls by using Mass ARRAY, and data of another 1517 healthy controls from Taiwan Biobank were also examined. RESULTS: Our results show that the dominant models of ITPKB rs4653767 (OR (95% CI) = 0.832 (0.699, 0.990), p = 0.038), IL1R2 rs34043159 (OR (95% CI) = 0.812 (0.665, 0.992), p = 0.041) and COQ7 rs11343 (OR (95% CI) = 0.304 (0.180, 0.512), p < 0.001) were associated with PD. In allelic analysis, the T allele of IL1R2 rs34043159 (OR (95% CI) = 0.873 (0.772, 0.987), p = 0.03) and T allele of COQ7 rs11343 (OR (95% CI) = 0.098 (0.040, 0.238), p < 0.001) showed lower risk of PD. After Bonferroni correction, only dominant model and T allele of COQ7 rs11343 showed significantly reduced the risk of PD. CONCLUSION: This study suggests that ITPKB, IL1R2 and COQ7 have influence on the risk of PD in Taiwan.
Assuntos
Proteínas Mitocondriais/genética , Oxigenases de Função Mista/genética , Doença de Parkinson , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores Tipo II de Interleucina-1 , Estudos de Casos e Controles , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Doença de Parkinson/genética , Polimorfismo de Nucleotídeo Único , Receptores Tipo II de Interleucina-1/genética , TaiwanRESUMO
Inside mitochondria reside semi-autonomous genomes, called mtDNA. mtDNA is multi-copy per cell and mtDNA copy number can vary from hundreds to thousands of copies per cell. The variability of mtDNA copy number between tissues, combined with the lack of variability of copy number within a tissue, suggest a homeostatic copy number regulation mechanism. Mutations in the gene encoding the Caenorhabditis elegans hydroxylase, CLK-1, result in elevated mtDNA. CLK-1's canonical role in ubiquinone biosynthesis results in clk-1 mutants lacking ubiquinone. Importantly, clk-1 mutants also exhibit slowed biological timing phenotypes (pharyngeal pumping, defecation, development) and an activated stress response (UPRmt). These biological timing and stress phenotypes have been attributed to ubiquinone deficiency; however, it is unknown whether the mtDNA phenotype is also due to ubiquinone deficiency. To test this, in animals carrying the uncharacterized clk-1 (ok1247) mutant allele, we supplemented with an exogenous ubiquinone precursor 2-4-dihydroxybenzoate (DHB), which has previously been shown to restore ubiquinone biosynthesis. We measured phenotypes as a function of DHB across a log-scale range. Unlike the biological timing and stress phenotypes, the elevated mtDNA phenotype was not rescued. Since CLK-1's canonical role is in ubiquinone biosynthesis and DHB does not rescue mtDNA copy number, we infer CLK-1 has an additional function in homeostatic mtDNA copy number regulation.
Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Variações do Número de Cópias de DNA , DNA Mitocondrial/metabolismo , Hidroxibenzoatos/farmacologia , Mutação , Ubiquinona/metabolismo , Alelos , Animais , Ubiquinona/biossínteseRESUMO
Coenzyme Q10/ COQ10 , an essential cofactor in the electron-transport chain is involved in ATP production. Primary COQ10 deficiency is clinically and genetically a heterogeneous group of mitochondrial disorders caused by defects in the COQ10 synthesis pathway. Its mode of inheritance is autosomal recessive and it is characterized by metabolic abnormalities and multisystem involvement including neurological features. Mutations in 10 genes have been identified concerning this group of diseases, so far. Among those, variants of the COQ7 gene are very rare and confined to three patients with Asian ancestry. Here, we present the clinical features and results of whole-exome sequencing (WES) of three Iranian unrelated families affected by primary COQ10 deficiency. Three homozygous variants in COQ2, COQ4, and COQ7 genes were identified. Candidate variants of the COQ2 and COQ4 genes were novel and associated with the cerebellar signs and multisystem involvement, whereas, the known variant in COQ7 was associated with a mild phenotype that was initially diagnosed as hereditary spastic paraplegia (HSP). This variant has already been reported in a Canadian girl with similar presentations that also originated from Iran suggesting both patients may share a common ancestor. Due to extensive heterogeneity in this group of disorders, and overlap with other mitochondrial/neurological disorders, WES may be helpful to distinguish primary coenzyme Q10 deficiency from other similar conditions. Given that some features of primary coenzyme Q10 deficiency may improve with exogenous COQ10 , early diagnosis is very important.
Assuntos
Alquil e Aril Transferases/genética , Ataxia/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Oxigenases de Função Mista/genética , Debilidade Muscular/genética , Ubiquinona/análogos & derivados , Ubiquinona/deficiência , Ataxia/epidemiologia , Ataxia/patologia , Canadá/epidemiologia , Criança , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Irã (Geográfico)/epidemiologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/patologia , Debilidade Muscular/epidemiologia , Debilidade Muscular/patologia , Mutação/genética , Ubiquinona/genética , Sequenciamento do ExomaRESUMO
Mutations of many PDSS and COQ genes are associated with primary coenzyme Q10 (CoQ10) deficiency, whereas mitochondrial DNA (mtDNA) mutations might cause secondary CoQ10 deficiency. Previously, we found that COQ5 and COQ9 proteins are present in different protein complexes in the mitochondria in human 143B cells and demonstrated that COQ5 and COQ9 knockdown suppresses CoQ10 levels. In the present study, we characterized other PDSS and COQ proteins and examined possible crosstalk among various PDSS and COQ proteins. Specific antibodies and mitochondrial localization of mature proteins for these proteins, except PDSS1 and COQ2, were identified. Multiple isoforms of PDSS2 and COQ3 were observed. Moreover, PDSS1, PDSS2, and COQ3 played more important roles in maintaining the stability of the other proteins. Protein complexes containing PDSS2, COQ3, COQ4, COQ6, or COQ7 protein in the mitochondria were detected. Two distinct PDSS2-containing protein complexes could be identified. Transient knockdown of these genes, except COQ6 and COQ8, decreased CoQ10 levels, but only COQ7 knockdown hampered mitochondrial respiration and caused increased ubiquinol:ubiquinone ratios and accumulation of a putative biosynthetic intermediate with reversible redox property as CoQ10. Furthermore, suppressed levels of PDSS2 and various COQ proteins (except COQ3 and COQ8A) were found in cybrids containing the pathogenic mtDNA A8344G mutation or in FCCP-treated 143B cells, which was similar to our previous findings for COQ5. These novel findings may prompt the elucidation of the putative CoQ synthome in human cells and the understanding of these PDSS and COQ protein under physiological and pathological conditions.
Assuntos
Alquil e Aril Transferases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ubiquinona/análogos & derivados , Especificidade de Anticorpos , Vias Biossintéticas , Linhagem Celular Tumoral , Transporte de Elétrons , Humanos , Peso Molecular , Estabilidade Proteica , Transporte Proteico , Ubiquinona/metabolismoRESUMO
Given that the associated clinical manifestations of ubiquinone (UQ, or coenzyme Q) deficiency diseases are highly heterogeneous and complicated, effective new research tools for UQ homeostasis studies are awaited. We set out to develop human COQ7 inhibitors that interfere with UQ synthesis. Systematic structure-activity relationship development starting from a screening hit compound led to the identification of highly potent COQ7 inhibitors that did not disturb physiological cell growth of human normal culture cells. These new COQ7 inhibitors may serve as useful tools for studying the balance between UQ supplementation pathways: de novo UQ synthesis and extracellular UQ uptake.
Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas Mitocondriais/antagonistas & inibidores , Oxigenases de Função Mista/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Células HeLa , Humanos , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/metabolismo , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Multiple system atrophy (MSA) is a progressive neurodegenerative disease clinically characterized by parkinsonism and cerebellar ataxia, and pathologically by oligodendrocyte α-synuclein inclusions. Genetic variants of COQ2 are associated with an increased risk for MSA in certain populations. Also, deficits in the level of coenzyme Q10 and its biosynthetic enzymes are associated with MSA. Here, we measured ATP levels and expression of biosynthetic enzymes for coenzyme Q10, including COQ2, in multiple regions of MSA and control brains. We found a reduction in ATP levels in disease-affected regions of MSA brain that associated with reduced expression of COQ2 and COQ7, supporting the concept that abnormalities in the biosynthesis of coenzyme Q10 play an important role in the pathogenesis of MSA.
RESUMO
BACKGROUND: Primary coenzyme Q10 (CoQ10) deficiencies are clinically and genetically heterogeneous group of disorders associated with defects of genes involved in the CoQ10 biosynthesis pathway. COQ7-associated CoQ10 deficiency is very rare and only two cases have been reported. METHODS AND RESULTS: We report a patient with encephalo-myo-nephro-cardiopathy, persistent lactic acidosis, and basal ganglia lesions resulting in early infantile death. Using whole exome sequencing, we identified compound heterozygous variants in the COQ7 gene consisting of a deletion insertion resulting in frameshift [c.599_600delinsTAATGCATC, p.(Lys200Ilefs*56)] and a missense substitution [c.319C>T, p.(Arg107Trp), NM_016138.4]. Skin fibroblast studies showed decreased combined complex II + III activity and reduction in CoQ10 level. CONCLUSION: This third patient presenting with lethal encephalo-myo-nephro-cardiopathy represents the severe end of this ultra-rare mitochondrial disease caused by biallelic COQ7 mutations. The response to CoQ10 supplement is poor and alternative treatment strategies should be developed for a more effective management of this disorder.
RESUMO
Coenzyme Q (ubiquinone) is a redox-active isoprenylated benzoquinone commonly found in living organisms. The biosynthetic pathway for this lipid has been extensively studied in Escherichia coli and Saccharomyces cerevisiae; however, little is known in Pseudomonas aeruginosa. In this study, we observed that CoQ9 is the predominant coenzyme Q synthesized by the Shenqinmycin-producing strain M18. BLASTP and domain organization analyses identified 15 putative genes for CoQ biosynthesis in M18. The roles of 5 of these genes were genetically and biochemically investigated. PAM18_4662 encodes a nonaprenyl diphosphate synthase (Nds) and determines the number of isoprenoid units of CoQ9 in M18. PAM18_0636 (coq7PA) and PAM18_5179 (ubiJPA) are essential for aerobic growth and CoQ9 biosynthesis. Deletion of ubiJPA, ubiBPA and ubiKPA led to reduced CoQ biosynthesis and an accumulation of the CoQ9 biosynthetic intermediate 3-nonaprenylphenol (NPP). Moreover, we also provide evidence that the truncated UbiJPA interacts with UbiBPA and UbiKPA to affect CoQ9 biosynthesis by forming a regulatory complex. The genetic diversity of coenzyme Q biosynthesis may provide targets for the future design of specific drugs to prevent P. aeruginosa-related infections.
Assuntos
Agentes de Controle Biológico/metabolismo , Pseudomonas aeruginosa/metabolismo , Ubiquinona/biossíntese , Vias Biossintéticas/genética , Pseudomonas aeruginosa/genéticaRESUMO
Primary ubiquinone (co-enzyme Q) deficiency results in a wide range of clinical features due to mitochondrial dysfunction. Here, we analyse and characterize two mutations in the ubiquinone biosynthetic gene COQ7. One mutation from the only previously identified patient (V141E), and one (L111P) from a 6-year-old girl who presents with spasticity and bilateral sensorineural hearing loss. We used patient fibroblast cell lines and a heterologous expression system to show that both mutations lead to loss of protein stability and decreased levels of ubiquinone that correlate with the severity of mitochondrial dysfunction. The severity of L111P is enhanced by the particular COQ7 polymorphism (T103M) that the patient carries, but not by a mitochondrial DNA mutation (A1555G) that is also present in the patient and that has been linked to aminoglycoside-dependent hearing loss. We analysed treatment with the unnatural biosynthesis precursor 2,4-dihydroxybenzoate (DHB), which can restore ubiquinone synthesis in cells completely lacking the enzymatic activity of COQ7. We find that the treatment is not beneficial for every COQ7 mutation and its outcome depends on the extent of enzyme activity loss.
Assuntos
Sistema Enzimático do Citocromo P-450/genética , Fibroblastos/efeitos dos fármacos , Perda Auditiva/genética , Hidroxibenzoatos/farmacologia , Oxigenases de Função Mista/genética , Paraplegia Espástica Hereditária/genética , Ubiquinona/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Criança , Consanguinidade , Sistema Enzimático do Citocromo P-450/metabolismo , Análise Mutacional de DNA , DNA Mitocondrial/química , DNA Mitocondrial/genética , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/metabolismo , Mutação , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/metabolismoRESUMO
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica/fisiologia , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Ubiquinona/biossíntese , Regiões 3' não Traduzidas/fisiologia , Proteína Semelhante a ELAV 1/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/metabolismo , Humanos , Ubiquinona/genéticaRESUMO
Coenzyme Q (Q) is an isoprenylated benzoquinone electron carrier required for electronic transport in the mitochondrial respiratory chain, shuttling electrons from complexes I and II to complex III. Q synthesis requires proteins termed Coq (Coq1-Coq11). Coq7p is part of the multimeric complex involved in Q synthesis catalyzing the hydroxylation of demethoxy-Q6 (DMQ6), the last monooxygenase step in Q synthesis with a catalytic center containing a carboxylate-bridged di-iron at the active site of the enzyme. Here we indicate a group of Coq7p residues that modulate protein activity: D53, R57, V111 and S114. R57, V111 and S114 are very conserved residues; V111 and S114 are present in separated communities of amino acid correlation analysis. The coq7 double mutant V111G/S114A and S114E show respiratory deficiency at non permissive temperature, DMQ6 accumulation and lower content of Q6. Therefore we conclude that phosphomimetic S114E inhibit Coq7p activity, and propose that S114 phosphorylation is required to move a non-structured loop of 25 amino acids between helix 2 and 3, and that affects the di-iron coordination in Coq7p catalytic center.
Assuntos
Membranas Mitocondriais/enzimologia , Modelos Moleculares , Ferroproteínas não Heme/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Sequência de Aminoácidos , Substituição de Aminoácidos , Biocatálise , Sequência Conservada , Estabilidade Enzimática , Temperatura Alta/efeitos adversos , Hidroxilação , Membranas Mitocondriais/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Ferroproteínas não Heme/química , Ferroproteínas não Heme/genética , Fosforilação , Filogenia , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de SequênciaRESUMO
Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.