Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 213: 108837, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878389

RESUMO

One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains. The environmental risks of nanoparticle proliferation are unclear. At the same time, certain nanoparticles act as adaptogens, improving plant tolerance to unfavorable stress factors. It is quite realistic to choose such experimental conditions, under which the effect on plant stress tolerance will be obvious and the accumulation of nanoparticles in tissues will be minimal. In this case, the main relevant factors are the type of nanoparticles, their concentration and their way of penetration into plants. We chose to study gold nanoparticles (Au-NPs), widely used in biomedical research. The concentration of Au-NPs was 20 µg/mL, which is considered safe for living organisms. The influence of Au-NPs on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening was examined. The study of the photosynthetic apparatus and antioxidant system was the primary focus. The stimulating effect of Au-NPs on cold tolerance of wheat plants was shown. The results expand our knowledge of the processes by which nanoparticles impact plants and the potential applications of nanoparticles as adaptogens in science and agriculture.


Assuntos
Temperatura Baixa , Ouro , Nanopartículas Metálicas , Triticum , Triticum/metabolismo , Triticum/efeitos dos fármacos , Ouro/química , Nanopartículas Metálicas/química , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo
2.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732476

RESUMO

One of the key problems of biology is how plants adapt to unfavorable conditions, such as low temperatures. A special focus is placed on finding ways to increase tolerance in important agricultural crops like wheat. Au-based nanoparticles (Au-NPs) have been employed extensively in this area in recent years. Au-NPs can be produced fast and easily using low-cost chemical reagents. When employed in microdoses, Au-NPs are often non-toxic to plants, animals, and people. In addition, Au-NPs mainly have favorable impacts on plants. In this study, we investigated the effect of Au-NP seed nanopriming (diameter 15.3 nm, Au concentration 5-50 µg mL-1) on cold tolerance, as well as some physiological, biochemical and molecular parameters, of cold-sustainable wheat (Triticum aestivum L.) genotype Zlata. The treatment with Au-NPs improved tolerance to low temperatures in control conditions and after cold hardening. Au-NPs treatment boosted the intensity of growth processes, the quantity of photosynthetic pigments, sucrose in leaves, and the expressions of encoded RuBisCo and Wcor15 genes. The potential mechanisms of Au-NPs' influence on the cold tolerance of wheat varieties were considered.

3.
Metabolites ; 14(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38668327

RESUMO

The study of cold-tolerance mechanisms of wheat as a leading cereal crop is very relevant to science. Primary metabolites play an important role in the formation of increased cold tolerance. The aim of this research is to define changes in the content of primary metabolites (soluble proteins and sugars), growth, and photosynthetic apparatus of freezing-tolerant and cold-sustainable wheat (Triticum aestivum L.) genotypes under optimal conditions and after prolonged (7 days) exposure to low temperature (4 °C). In order to gain a deeper comprehension of the mechanisms behind wheat genotypes' adaptation to cold, we determined the expression levels of photosynthetic genes (RbcS, RbcL) and genes encoding cold-regulated proteins (Wcor726, CBF14). The results indicated different cold-adaptation strategies of freezing-tolerant and cold-sustainable wheat genotypes, with soluble proteins and sugars playing a significant role in this process. In plants of freezing-tolerant genotypes, the strategy of adaptation to low temperature was aimed at increasing the content of soluble proteins and modification of carbohydrate metabolism. The accumulation of sugars was not observed in wheat of cold-sustainable genotypes during chilling, but a high content of soluble proteins was maintained both under optimal conditions and after cold exposure. The adaptation strategies of wheat genotypes differing in cold tolerance were related to the expression of photosynthetic genes and genes encoding cold-regulated proteins. The data improve our knowledge of physiological and biochemical mechanisms of wheat cold adaptation.

4.
Plant Sci ; 325: 111481, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181944

RESUMO

Cold stress reduces plant photosynthesis and increases the accumulation of reactive oxygen species (ROS) in plants, thereby dramatically affecting plant growth, crop productivity and quality. Here, we report that lumen thiol oxidoreductase 1 (StLTO1), a vitamin K epoxide reductase (VKOR)-like protein in the thylakoid membrane of Solanum tuberosum L., enhances the cold tolerance of potato plants. Under normal conditions, overexpression of StLTO1 in plants promoted plant growth. In addition, potato plants overexpressing StLTO1 displayed enhanced photosynthetic capacity and increased capacity for scavenging ROS compared to StLTO1 knockdown and wild-type potato plants under cold conditions. Overexpression of StLTO1 in potato plants also improved cold-regulated (COR) gene expression after cold stress. Our results suggest that StLTO1 acts as a positive regulator of cold resistance in potato plants.


Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Geneticamente Modificadas/genética , Oxirredutases/genética , Compostos de Sulfidrila/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Trends Plant Sci ; 27(5): 415-417, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35090818

RESUMO

Plants can acquire increased freezing tolerance through cold-acclimation involving the ICE1-CBF-COR pathway. Recently, Lee et al. investigated a potential link between the functional activation of CBF and cellular redox state. We propose that redox-mediated CBF activation could be a hub of low temperature as well as light signaling in the cold-acclimation process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Aclimatação/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Congelamento , Regulação da Expressão Gênica de Plantas
6.
Plant J ; 108(6): 1679-1689, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626033

RESUMO

Leucine-rich repeat-receptor-like kinase (LRR-RLK) is a large subfamily of plant RLKs; however, its role in cold tolerance is still unknown. A novel cold tolerance LRR-RLK gene (MtCTLK1) in Medicago truncatula was identified using the transgenic lines overexpressing MtCTLK1 (MtCTLK1-OE) and mtctlk1 lines with Tnt1 retrotransposon insertion. Compared with the wild-type, MtCTLK1-OE lines had increased cold tolerance and mtctlk1 showed decreased cold tolerance. The impaired cold tolerance in mtctlk1 could be complemented by the transgenic expression of MtCTLK1 or its homolog MfCTLK1 from Medicago falcata. Antioxidant enzyme activities and proline accumulation as well as transcript levels of the associated genes were increased in response to cold, with higher levels in MtCTLK1-OE or lower levels in mtctlk1 lines as compared with wild type. C-Repeat-Binding Factors (CBFs) and CBF-dependent cold-responsive genes were also induced in response to cold, and higher transcript levels of CBFs and CBF-dependent cold-responsive genes were observed in MtCTLK1-OE lines whereas lower levels in mtctlk1 mutants. The results validate the role of MtCTLK1 or MfCTLK1 in the regulation of cold tolerance through the CBF pathway, antioxidant defense system and proline accumulation. It also provides a valuable gene for the molecular breeding program to improve cold tolerance in crops.


Assuntos
Resposta ao Choque Frio/fisiologia , Medicago truncatula/fisiologia , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Retroelementos
7.
Plant J ; 108(4): 1069-1082, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34528312

RESUMO

Calmodulin-like proteins (CMLs) are one of the Ca2+ sensors in plants, but the functions of most CMLs remain unknown. The regulation of cold tolerance and flowering time by MtCML42 in Medicago truncatula and the underlying mechanisms were investigated using MtCML42-overexpressing plants and cml42 Medicago mutants with a Tnt1 retrotransposon insertion. Compared with the wild type (WT), MtCML42-overexpressing lines had increased cold tolerance, whereas cml42 mutants showed decreased cold tolerance. The impaired cold tolerance in cml42 could b complemented by MtCML42 expression. The transcript levels of MtCBF1, MtCBF4, MtCOR413, MtCAS15, MtLTI6A, MtGolS1 and MtGolS2 and the concentrations of raffinose and sucrose were increased in response to cold treatment, whereas higher levels were observed in MtCML42-overexpressing lines and lower levels were observed in cml42 mutants. In addition, early flowering with upregulated MtFTa1 and downregulated MtABI5 transcripts was observed in MtCML42-overexpressing lines, whereas delayed flowering with downregulated MtFTa1 and upregulated MtABI5 was observed in cml42. MtABI5 expression could complement the flowering phenotype in the Arabidopsis mutant abi5. Our results suggest that MtCML42 positively regulates MtCBF1 and MtCBF4 expression, which in turn upregulates the expression of some COR genes, MtGolS1 and MtGolS2, which leads to raffinose accumulation and increased cold tolerance. MtCML42 regulates flowering time through sequentially downregulating MtABI5 and upregulating MtFTa1 expression.


Assuntos
Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Rafinose/metabolismo , Calmodulina/genética , Temperatura Baixa , Regulação para Baixo , Flores/genética , Flores/fisiologia , Medicago truncatula/fisiologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Regulação para Cima
8.
Plant Cell Environ ; 44(5): 1522-1533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547695

RESUMO

Auxin induced in root culture (AIR12) is a single gene in Arabidopsis and codes for a mono-heme cytochrome b, but it is unknown whether plant AIR12 is involved in abiotic stress responses. MfAIR12 was identified from Medicago falcata that is legume germplasm with great cold tolerance. Transcript levels of MfAIR12 and its homolog MtAIR12 from Medicago truncatula was induced under low temperature. Overexpression of MfAIR12 led to the accumulation of H2 O2 in apoplast and enhanced cold tolerance, which was blocked by H2 O2 scavengers, indicating that the increased cold tolerance was dependent upon the accumulated H2 O2 . In addition, declined cold tolerance was observed in Arabidopsis mutant air12, which could be restored by expressing MfAIR12. Compared to the wild type, higher levels of ascorbic acid and ascorbate redox state, as well as transcripts of the C repeat/dehydration responsive element-binding factor (CBF) transcription factors and their downstream cold-responsive genes, were observed in MfAIR12 transgenic lines, but lower levels of those in air12 mutant. It is suggested AIR12 confers cold tolerance as a result of the altered H2 O2 in the apoplast that is signaling in the regulation of CBF cold response pathway and ascorbate homeostasis.


Assuntos
Adaptação Fisiológica , Ácido Ascórbico/metabolismo , Temperatura Baixa , Homeostase , Medicago/fisiologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Medicago/genética , Mutação/genética , Oxirredução , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética
9.
Appl Biochem Biotechnol ; 177(4): 792-811, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260485

RESUMO

Cold stress, as chilling (<20 °C) or freezing (<0 °C), is one of the frequently exposed stresses in cultivated plants like potato. Under cold stress, plants differentially modulate their gene expression to develop a cold tolerance/acclimation. In the present study, we aimed to identify the overall gene expression profile of chilling-stressed (+4 °C) potato at four time points (4, 8, 12, and 48 h), with a particular emphasis on the genes related with transcription factors (TFs), phytohormones, lipid metabolism, signaling pathway, and photosynthesis. A total of 3504 differentially expressed genes (DEGs) were identified at four time points of chilling-induced potato, of which 1397 were found to be up-regulated while 2107 were down-regulated. Heatmap showed that genes were mainly up-regulated at 4-, 8-, and 12-h time points; however, at 48-h time point, they inclined to down-regulate. Seventy five up-regulated TF genes were identified from 37 different families/groups, including mainly from bHLH, WRKY, CCAAT-binding, HAP3, and bZIP families. Protein kinases and calcium were major signaling molecules in cold-induced signaling pathway. A collaborated regulation of phytohormones was observed in chilling-stressed potato. Lipid metabolisms were regulated in a way, highly probably, to change membrane composition to avoid cold damage and render in signaling. A down-regulated gene expression profile was observed in photosynthesis pathway, probably resulting from chilling-induced reduced enzyme activity or light-triggered ROSs damage. The findings of this study will be a valuable theoretical knowledge in terms of understanding the chilling-induced tolerance mechanisms in cultivated potato plants as well as in other Solanum species.


Assuntos
Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Fotossíntese/genética , Reguladores de Crescimento de Plantas/genética , Transdução de Sinais/genética , Solanum tuberosum/citologia , Solanum tuberosum/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA