Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Small ; : e2309570, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39155494

RESUMO

The escalating demand for portable near-infrared (NIR) light sources has posed a formidable challenge to the development of NIR phosphors characterized by high efficiency and exceptional thermal stability. Taking inspiration from the chemical unit co-substitution strategy, high-performance tunable (Lu3- xCax)(Ga5- xGex)O12:6%Cr3+ (x = 0-3) phosphors are designed with an emission center from 704 to 780 nm and a broadest full width at half maximum (FWHM) of up to 172 nm by introducing Ca2+ and Ge4+ ions into the garnet structure. In particular, Lu3Ga5O12:6%Cr3+ demonstrates an anti-thermal quenching phenomenon (I423K = 113.1%). Compared to Lu3Ga5O12:6%Cr3+, Lu2CaGa4GeO12:6%Cr3+ exhibits significantly improved FWHM and IQE by 108 nm and 25.5%, respectively, while maintaining good thermal stability (I423K = 80.4%). Finally, Lu2CaGa4GeO12:6%Cr3+ phosphor is combined with a 465 nm blue LED chip to fabricate NIR LED devices, exhibiting a NIR electroluminescence efficiency of 13.31%@100 mA and demonstrating successful applications in nocturnal illumination and biomedical imaging technology. This work offers a fresh perspective on the design of highly efficient NIR garnet phosphors.

2.
Small ; : e2402352, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126362

RESUMO

Mechanoluminescence (ML) phosphors have found various promising utilizations such as in non-destructive stress sensing, anti-counterfeiting, and bio stress imaging. However, the reported NIR MLs have predominantly been limited to bulky particle size and weak ML intensity, hindering the further practical applications. For this regard, a nano-sized ZnGa2O4: Cr3+ NIR ML phosphor is synthesized by hydrothermal method. By improving the synthesis method and regulating the chemical composition, the NIR ML (600-1000 nm) intensity of such nano-materials has been further enhanced about four times. The reasons for the ML performance difference between micro-/nano- sized phosphors also have been preliminarily analyzed. Additionally, this work probes into the ML mechanism deeply in traps' aspect from band structure and defect formation energy, which can supply significant references for a new approach to develop efficient NIR ML nanoparticles. Finally, due to excellent tissue penetration capability, nano-sized ZnGa2O4:Cr3+ NIR ML phosphor shows great potential applications in biomedical fields such as for the detection of clinical oral diseases.

3.
Curr Res Microb Sci ; 7: 100246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39022313

RESUMO

Over the last two decades, the incidence of Invasive Fungal Infections (IFIs) globally has risen, posing a considerable challenge despite available antifungal therapies. Addressing this, the World Health Organization (WHO) prioritized research on specific fungi, notably Histoplasma spp. and Paracoccidioides spp. These dimorphic fungi have a mycelial life cycle in soil and a yeast phase associated with tissues of mammalian hosts. Inhalation of conidia and mycelial fragments initiates the infection, crucially transforming into the yeast form within the host, influenced by factors like temperature, host immunity, and hormonal status. Survival and multiplication within alveolar macrophages are crucial for disease progression, where innate immune responses play a pivotal role in overcoming physical barriers. The transition to pathogenic yeast, triggered by increased temperature, involves yeast phase-specific gene expression, closely linked to infection establishment and pathogenicity. Cell adhesion mechanisms during host-pathogen interactions are intricately linked to fungal virulence, which is critical for tissue colonization and disease development. Yeast replication within macrophages leads to their rupture, aiding pathogen dissemination. Immune cells, especially macrophages, dendritic cells, and neutrophils, are key players during infection control, with macrophages crucial for defense, tissue integrity, and pathogen elimination. Recognition of common virulence molecules such as heat- shock protein-60 (Hsp60) and enolase by pattern recognition receptors (PRRs), mainly via the complement receptor 3 (CR3) and plasmin receptor pathways, respectively, could be pivotal in host-pathogen interactions for Histoplasma spp. and Paracoccidioides spp., influencing adhesion, phagocytosis, and inflammatory regulation. This review provides a comprehensive overview of the dynamic of these two IFIs between host and pathogen. Further research into these fungi's virulence factors promises insights into pathogenic mechanisms, potentially guiding the development of effective treatment strategies.

4.
Int J Biol Macromol ; 276(Pt 1): 133915, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019374

RESUMO

The low solubility of chitosan (CS) imposes adverse effects on its application. In this work, one of the aims is to improve the water solubility of CS. By introducing water-soluble side chains to CS, this aim was achieved. Besides, fluorescent moieties were incorporated into the side chains, the fluorescent copolymers were endowed with Cr3+ and Cu2+ ions recognition ability. Firstly, a reversible addition-fragmentation chain transfer polymerization (RAFT) reagent with naphthalimide units and CC groups was prepared. Water-soluble monomer methyl acrylic acid (MAA) was employed in the RAFT polymerization. Thus, water-soluble polymer with fluorescent unit and -C ≡ C on both ends of the polymer was obtained. They were introduced into CS, and the CS-based fluorescent copolymers were obtained eventually. The amount of MAA introduced could be tuned to obtain three side chains of different lengths. It was found that the more MAA was introduced, the better the solubility of CS-TP was. The detection limits (LOD) of Cr3+ and Cu2+ were 44.6 nM and 54.5 nM, respectively. The detection of Cr3+ and Cu2+ ions is further combined with a mobile APP to realize real-time, portable, and visual detection. And the application in the logic gate, a new detection platform, is prepared.


Assuntos
Quitosana , Cromo , Cobre , Corantes Fluorescentes , Solubilidade , Água , Quitosana/química , Cobre/química , Cobre/análise , Cromo/análise , Cromo/química , Corantes Fluorescentes/química , Água/química , Limite de Detecção , Íons , Polimerização , Espectrometria de Fluorescência/métodos
5.
Mikrochim Acta ; 191(7): 398, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877344

RESUMO

Persistent luminescent nanomaterials (PLNPs) Zn0.8Ga2O4: Cr3+, Zr3+ with high brightness and good dispersion were prepared by hydrothermal method. The PLNPs were used as luminescent units, and CoOOH nanosheets were used as quenching agents. Based on the fluorescence internal filtering effect, the luminescence of PLNPs were effectively quenched by CoOOH modification on the surface of PLNPs. However, the introduction of ascorbic acid (AA) restored the luminescence of PLNPs and successfully achieved highly sensitive and selective detection of AA. This was due to a selective redox reaction between CoOOH and AA, in which CoOOH was reduced to Co2+. The degree of luminescence recovery of PLNPs showed a good linear relationship with AA concentration in the range 5-250 µM, with a detection limit of 0.72 µM. The recovery of actual spiked samples were 97.9-102.2%. This method is expected to provide reference for the study of other redox substances in biological systems.

6.
ACS Appl Mater Interfaces ; 16(26): 33855-33864, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38900841

RESUMO

Near-infrared (NIR) phosphors have emerged as novel luminescent materials across various fields due to their unique advantages of high penetration and invisibility. However, there is currently a lack of intelligent NIR phosphors that can achieve multimode stimuli responsive for sensing applications. In this study, we employed a high-temperature solid-phase reaction to incorporate Pr3+ into Cr3+-doped gallate magnetite SrGa12O19 phosphor, yielding a multimode luminescent intelligent NIR phosphor. Also, due to the inherent cation vacancies and defects in the matrix, the material not only exhibits brighter photoluminescence but also exhibits distinct NIR mechanoluminescence at a lower load. Notably, Pr3+-doped SrGa12O19:Cr3+ also demonstrates extended persistent luminescence and thermoluminescence effects. Finally, we combined the phosphor with the blue LED chip to develop a new multifunctional NIR pc-LED. Leveraging NIR's unique penetrating ability, it can persist in biological tissues for prolonged periods, enabling optical inspection and offering a novel approach to password protection for anticounterfeiting measures. This intelligent NIR phosphor solution significantly expands the application potential of NIR light in food quality assessment and analysis.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124570, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843616

RESUMO

Short-wave infrared emitting phosphors have extensive applications for spectroscopy technology. The near-infrared phosphor NaScP2O7:Cr3+ that we present in this work has a full width at half maximum (FWHM) of approximately 196 nm, which ranges from 700 to 1200 nm. To achieve efficient short-wave infrared, Yb3+ ions were co-doped. The NaScP2O7:Cr3+,Yb3+ material emitted infrared bands with peaks at 970 and 1003 nm upon excitation at450 nm. Benefitting from energy transfer (ET), the light in the 900-1200 nm from Yb3+ is effectively enhanced. Photoluminescence spectra, thermal quenching, and decay curves of Cr3+/Yb3+ single and codoped NaScP2O7 were investigated. An internal quantum yield of 29.6 % wasdemonstrated by the optimized phosphor NaScP2O7:Cr3+,Yb3+. Furthermore, The final fabrication of the short-wave infrared pc-LED was done through the combination of a blue-emitting chip and NaScP2O7:Cr3+,Yb3+ phosphor, thereby showing great promise for real implementations.

8.
Technol Health Care ; 32(S1): 351-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38759060

RESUMO

BACKGROUND: A growing body of evidence has shown that activating spinal cord glial cells (typically astrocytes and microglial cells) is closely related to hyperpathia and persistent pain. OBJECTIVE: To investigate the expression of GFAP and CR3/CD11b in cornu dorsale medullae spinalis of rats with nonbacterial prostatitis, to explore the therapeutic efficacy and action mechanism of intrathecal injection of BNP alleviating chronic neuropathic pain. METHODS: Eighteen male SPF SD rats were randomly divided into sham operation control group, nonbacterial prostatitis group (NBP) and intrathecal injection BNP group, the NBP model was established by intraprostatic injection of CFA, and the spinal cord of L6-S1 segment was extracted seven days after intrathecal injection of BNP; The expression of GFAP and CR3/CD11b in dorsal horn of spinal cord were detected by immunofluorescence and Western blot. RESULTS: The cumulative optical density values of GFAP and CR3/CD11b immunofluorescence assay in the NBP group were higher than those in the sham operation group, with statistical significance (p⁢ï⁢»â¢ 0.01); The expression of GFAP and CR3/CD11b in intrathecal injection BNP group were lower than those in NBP group, the differences were statistically significant (p⁢ï⁢»â¢ 0.01). Western blot results showed that the expression of GFAP and CR3/CD11B in NBP group were higher than those in sham operation group, with statistical significance (p⁢ï⁢»â¢ 0.05). The expression of GFAP and CR3/CD11B in intrathecal injection BNP group were lower than those in NBP group, the differences were statistically significant (p⁢ï⁢»â¢ 0.05). CONCLUSION: Intrathecal injection of BNP can down-regulate the expressions of GFAP and CR3/CD11b in L6-S1 spinal cord of NBP rat model and to further inhibit chronic pain caused by NBP.


Assuntos
Proteína Glial Fibrilar Ácida , Peptídeo Natriurético Encefálico , Prostatite , Ratos Sprague-Dawley , Medula Espinal , Animais , Masculino , Ratos , Prostatite/metabolismo , Medula Espinal/metabolismo , Peptídeo Natriurético Encefálico/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Antígeno CD11b/metabolismo , Modelos Animais de Doenças , Injeções Espinhais , Neuralgia
9.
Materials (Basel) ; 17(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38730758

RESUMO

In this paper, two flower-like magnesium silicate nanomaterials were prepared. These and another two commercial magnesium silicate materials were characterized using a scanning electron microscope, the N2 adsorption-desorption method, and other methods. The structure-activity relationship between the adsorption performance of these four magnesium silicate materials and their specific surface area, pore size distribution, and pore structure was compared. The results showed that the 3-FMS modified by sodium dodecyl sulfonate (SDS) had the largest specific surface area and pore size, the best adsorption performance, and the largest experimental equilibrium adsorption capacity (qe,exp) for Co2+, reaching 190.01 mg/g, and Cr3+, reaching 208.89 mg/g. The adsorption behavior of the four materials for Co2+ and Cr3+ both fitted the pseudo-second-order kinetic model and Langmuir adsorption model, indicating that chemical monolayer uniform adsorption was the dominant adsorption process. Among them, the theoretical adsorption capacity (qm) of 3-FMS was the highest, reaching 207.62 mg/g for Co2+ and 230.85 mg/g for Cr3+. Through further research, it was found that the four materials mainly removed Co2+ and Cr3+ through electrostatic adsorption, surface metal ions (Mg2+), and acidic groups (-OH and -SO3H) exchanging with ions in solution. The adsorption performance of two self-made flower-like magnesium silicate materials for Co2+ and Cr3+ was superior to that of two commercial magnesium silicates.

10.
Materials (Basel) ; 17(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612000

RESUMO

High-velocity oxy-fuel (HVOF) thermally sprayed Cr3C2-NiCr coatings have been shown to be effective in shielding important machinery and equipment components from wear in harsh, high-temperature conditions. In this investigation, the HVOF thermal spray coating technique was used to deposit Cr3C2-NiCr powder with 10% Co particles onto ductile cast iron. The effect of the Co particles on the mechanical, tribological, and microstructure characteristics of a Cr3C2-NiCr/ductile cast iron system was investigated. The microstructure analysis employed various techniques, including light microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Scratch tests were applied to analyze the coating quality and adhesion. The coatings created using the HVOF spray method with Cr3C2-NiCr powders mixed with Co particles exhibited a dense structure containing large Co particles, partially melted, and very fine Cr3C2 particles embedded into the NiCr alloy matrix. Additionally, they possessed high hardness and excellent adhesion to the substrate. The results of bending strength tests were also presented, together with information on the coating's microhardness and fracture toughness. These included an analysis of the cracks and delamination in the Cr3C2-NiCr/ductile cast iron system. It was observed that the addition of Co particles significantly increased the resistance to cracking and wear behavior in the studied system.

11.
Materials (Basel) ; 17(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612124

RESUMO

To address the issue of the lack of red light in traditional Ce3+: YAG-encapsulated blue LED white light systems, we utilized spark plasma sintering (SPS) to prepare spinel-based Cr3+-doped red phosphor ceramics. Through phase and spectral analysis, the SPS-sintered ZnAl2O4: 0.5%Cr3+ phosphor ceramic exhibits good density, and Cr3+ is incorporated into [AlO6] octahedra as a red emitting center. We analyzed the reasons behind the narrow-band emission and millisecond-level lifetime of ZAO: 0.5%Cr3+, attributing it to the four-quadrupole interaction mechanism as determined through concentration quenching modeling. Additionally, we evaluated the thermal conductivity and thermal quenching performance of the ceramic. The weak electron-phonon coupling (EPC) effects and emission from antisite defects at 699 nm provide positive assistance in thermal quenching. At a high temperature of 150 °C, the thermal conductivity reaches up to 14 W·m-1·K-1, and the 687 nm PL intensity is maintained at around 70% of room temperature. Furthermore, the internal quantum efficiency (IQE) of ZAO: 0.5%Cr3+ phosphor ceramic can reach 78%. When encapsulated with Ce3+: YAG for a 450 nm blue LED, it compensates for the lack of red light, adjusts the color temperature, and improves the color rendering index (R9). This provides valuable insights for the study of white light emitting diodes (WLEDs).

12.
Brain Behav Immun ; 119: 454-464, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642614

RESUMO

BACKGROUND: Both functional brain imaging studies and autopsy reports have indicated the presence of synaptic loss in the brains of depressed patients. The activated microglia may dysfunctionally engulf neuronal synapses, leading to synaptic loss and behavioral impairments in depression. However, the mechanisms of microglial-synaptic interaction under depressive conditions remain unclear. METHODS: We utilized lipopolysaccharide (LPS) to induce a mouse model of depression, examining the effects of LPS on behaviors, synapses, microglia, microglial phagocytosis of synapses, and the C1q/C3-CR3 complement signaling pathway. Additionally, a C1q neutralizing antibody was employed to inhibit the C1q/C3-CR3 signaling pathway and assess its impact on microglial phagocytosis of synapses and behaviors in the mice. RESULTS: LPS administration resulted in depressive and anxiety-like behaviors, synaptic loss, and abnormal microglial phagocytosis of synapses in the hippocampal dentate gyrus (DG) of mice. We found that the C1q/C3-CR3 signaling pathway plays a crucial role in this abnormal microglial activity. Treatment with the C1q neutralizing antibody moderated the C1q/C3-CR3 pathway, leading to a decrease in abnormal microglial phagocytosis, reduced synaptic loss, and improved behavioral impairments in the mice. CONCLUSIONS: The study suggests that the C1q/C3-CR3 complement signaling pathway, which mediates abnormal microglial phagocytosis of synapses, presents a novel potential therapeutic target for depression treatment.


Assuntos
Complemento C1q , Complemento C3 , Depressão , Modelos Animais de Doenças , Microglia , Fagocitose , Transdução de Sinais , Sinapses , Animais , Complemento C1q/metabolismo , Microglia/metabolismo , Sinapses/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Depressão/metabolismo , Fagocitose/fisiologia , Complemento C3/metabolismo , Masculino , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124345, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38685161

RESUMO

With outstanding detection selectivity and sensitivity characteristics, samarium/europium-metal organic frameworks (Sm/Eu-MOF) is capable of functioning as a versatile light-emitting sensor particularly for detecting acetone, Cr3+, and Pb2+ in aqueous environment. While considering maximum detectable concentrations of 0.85 µM, 0.46 µM, and 1.04 µM, respectively, competitive energy interactions for acetone, absorption of energy for Cr3+, and substitution of ions for Pb2+ are the elucidated mechanisms of detecting these substances by Sm/Eu-MOF. Successful formulation and synthesis of a core-shell structured Sm/Eu-MOF, which has endurance to acid/alkali conditions and hydration/heat-stability, can be accomplished by utilizing Samarium and Europium nitrate ions, terephthalic acid, and 2, 5-furandicarboxylic acid. The recovery rate of acetone, Cr3+, and Pb2+ detection from real samples were 95.0-101.0 %, 99.8-101.0 %, and 99.9-104.0 %, respectively.

14.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612222

RESUMO

In this study, we conducted an extensive investigation into broadband near-infrared luminescence of Cr3+-doped Ca3Y2Ge3O12 garnet, employing first-principles calculations within the density functional theory framework. Our initial focus involved determining the site occupancy of Cr3+ activator ions, which revealed a pronounced preference for the Y3+ sites over the Ca2+ and Ge4+ sites, as evidenced by the formation energy calculations. Subsequently, the geometric structures of the excited states 2E and 4T2, along with their optical transition energies relative to the ground state 4A2 in Ca3Y2Ge3O12:Cr3+, were successfully modeled using the ΔSCF method. Calculation convergence challenges were effectively addressed through the proposed fractional particle occupancy schemes. The constructed host-referred binding energy diagram provided a clear description of the luminescence kinetics process in the garnet, which explained the high quantum efficiency of emission. Furthermore, the accurate prediction of thermal excitation energy yielded insights into the thermal stability of the compound, as illustrated in the calculated configuration coordinate diagram. More importantly, all calculated data were consistently aligned with the experimental results. This research not only advances our understanding of the intricate interplay between geometric and electronic structures, optical properties, and thermal behavior in Cr3+-doped garnets but also lays the groundwork for future breakthroughs in the high-throughput design and optimization of luminescent performance and thermal stability in Cr3+-doped phosphors.

15.
Small ; 20(31): e2309034, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453687

RESUMO

Mechanoluminescence (ML) materials are featured with the characteristic of "force to light" in response to external stimuli, which have made great progress in artificial intelligence and optical sensing. However, how to effectively enable ML in the material is a daunting challenge. Here, a Lu3Al2Ga3O12:Cr3+ (LAGO: Cr3+) near infrared (NIR) ML material peaked at 706 nm is reported, which successfully realizes the key to unlock ML by the lattice-engineering strategy Ga3+ substitution for Al3+ to "grow" oxygen vacancy (Ov) defects. Combined with thermoluminescence measurements, the observed ML is due to the formation of defect levels and the ML intensity is proportional to it. It is confirmed by X-ray photoelectron spectroscopy and electron paramagnetic resonance that such a process is dominated by Ov, which plays a crucial role in turning on ML in this compound. In addition, potential ML emissions from 4T2 and 2E level transitions are discussed from both experimental and theoretical aspects. This study reveals the mechanism of the change in ML behavior after cation substitution, and it may have important implications for the practical application of Ov defect-regulated turn-on of ML.

16.
Luminescence ; 39(4): e4730, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548694

RESUMO

Near-infrared light sources have potential applications in many fields. Cr3+ is a good luminescence centre to prepare near-infrared phosphors. Improving the performance of existing near-infrared luminescent materials has indeed attracted great interest from researchers. The luminescence properties of Zn2TiO4:Cr3+ were improved by crystal field engineering strategies. Zn2+-Ti4+ was partially replaced using a Li+-Nb5+ ion pair based on the Zn2TiO4:Cr3+ phosphors. Luminescence Cr3+-activated luminescent materials are sensitive to changes in the local crystal structure and crystal field environment. Doping of Li+-Nb5+ increased the luminescence intensity up to 2.7 times that of the undoped sample. Also, the thermal stability of the phosphor was greatly increased by the replacement of Li+-Nb5+.


Assuntos
Raios Infravermelhos , Luminescência , Íons , Lítio , Zinco
17.
Adv Exp Med Biol ; 3234: 125-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507204

RESUMO

X-ray crystallography has for most of the last century been the standard technique to determine the high-resolution structure of biological macromolecules, including multi-subunit protein-protein and protein-nucleic acids as large as the ribosome and viruses. As such, the successful application of X-ray crystallography to many biological problems revolutionized biology and biomedicine by solving the structures of small molecules and vitamins, peptides and proteins, DNA and RNA molecules, and many complexes-affording a detailed knowledge of the structures that clarified biological and chemical mechanisms, conformational changes, interactions, catalysis and the biological processes underlying DNA replication, translation, and protein synthesis. Now reaching well into the first quarter of the twenty-first century, X-ray crystallography shares the structural biology stage with cryo-electron microscopy and other innovative structure determination methods, as relevant and central to our understanding of biological function and structure as ever. In this chapter, we provide an overview of modern X-ray crystallography and how it interfaces with other mainstream structural biology techniques, with an emphasis on macromolecular complexes.


Assuntos
Biologia Molecular , Proteínas , Cristalografia por Raios X , Microscopia Crioeletrônica/métodos , Proteínas/química , Substâncias Macromoleculares/química
18.
Adv Mater ; 36(9): e2309500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37939136

RESUMO

There is strong demand for ultraefficient near-infrared (NIR) phosphors with adjustable emission properties for next-generation intelligent NIR light sources. Designing phosphors with large full-width at half-maximum (FWHM) variations is challenging. In this study, novel near-ultraviolet light-emitting diode (LED)-excited NIR phosphors, MgAlGa0.7 B0.3 O4 :Cr3+ (MAGBO:Cr3+ ), with three emission centers achieve ultra-narrowband (FWHM = 29 nm) to ultra-broadband (FWHM = 260 nm) emission with increasing Cr3+ concentration. Gaussian fitting and decay time analysis reveal the alteration in the FWHM, which is attributed to the energy transfer occurring between the three emission centers. The distinct thermal quenching behaviors of the three emission centers are revealed through the temperature-dependent decay times. The ultra-broadband NIR phosphor MAGBO:0.05Cr3+ exhibits high thermal stability (85%, 425 K) and exceptional external quantum efficiency of 68.5%. An NIR phosphor-converted LED (pc-LED) is fabricated using MAGBO:0.05Cr3+ phosphor, exhibiting a remarkable NIR output power of 136 mW at 600 mA in ultra-broadband NIR pc-LEDs. This study describes the preparation of highly efficient phosphors and provides a further understanding of the tunable FWHM, which is vital for high-performance NIR phosphors with versatile applications.

19.
Molecules ; 28(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38138555

RESUMO

Cr3+-doped Sr3Ga2Ge4O14:0.03Cr3+ (SGGO:0.03Cr3+) phosphor was synthesized via a high-temperature solid-phase method. Considering the tunable structure of SGGO, Ga3+ ions in the matrix were substituted with In3+ ions at a certain concentration. The tuned phosphor produced a red-shifted emission spectrum, with its luminescence intensity at 423 K maintained at 63% of that at room temperature; moreover, the internal quantum efficiency increased to 65.60%, and the external quantum efficiency correspondingly increased to 21.94%. On this basis, SGIGO:0.03Cr3+ was encapsulated into a pc-LED, which was applied in non-destructive testing (NDT) experiments, successfully realizing the recognition of water and anhydrous ethanol, proving its potential application in the field of NDT.

20.
World J Microbiol Biotechnol ; 40(1): 21, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996766

RESUMO

Cr(VI) is a hazardous environmental pollutant that poses significant risks to ecosystems and human health. We successfully isolated a novel strain of Bacillus mobilis, strain CR3, from Cr(VI)-contaminated soil. Strain CR3 showed 86.70% removal capacity at 200 mg/L Cr(VI), and a good Cr(VI) removal capacity at different pH, temperature, coexisting ions, and electron donor conditions. Different concentrations of Cr(VI) affected the activity of CR3 cells and the removal rate of Cr(VI), and approximately 3.46% of total Cr was immobilized at the end of the reaction. The combination of SEM-EDS and TEM-EDS analysis showed that Cr accumulated both on the cell surface and inside the cells after treatment with Cr(VI). XPS analysis showed that both Cr(III) and Cr(VI) were present on the cell surface, and FTIR results indicated that the presence of Cr on the cell surface was mainly related to functional groups, such as O-H, phosphate, and -COOH. The removal of Cr(VI) was mainly achieved through bioreduction, which primarily occurred outside the cell. Metabolomics analysis revealed the upregulation of five metabolites, including phenol and L-carnosine, was closely associated with Cr(VI) reduction, heavy metal chelation, and detoxification mechanisms. In addition, numerous metabolites were linked to cellular homeostasis exhibited differential expression. Cr(VI) exerted inhibitory effects on the division rate and influenced critical pathways, including energy metabolism, nucleotide metabolism, and amino acid synthesis and catabolism. These findings reveal the molecular mechanism of Cr(VI) removal by strain CR3 and provide valuable insights to guide the remediation of Cr(VI)-contaminated sites.


Assuntos
Bacillus , Ecossistema , Humanos , Bacillus/genética , Bacillus/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA