Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 53, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764023

RESUMO

BACKGROUND: The C-type lectin family 18 (CLEC18) with lipid and glycan binding capabilities is important to metabolic regulation and innate immune responses against viral infection. However, human CLEC18 comprises three paralogous genes with highly similar sequences, making it challenging to distinguish genetic variations, expression patterns, and biological functions of individual CLEC18 paralogs. Additionally, the evolutionary relationship between human CLEC18 and its counterparts in other species remains unclear. METHODS: To identify the sequence variation and evolutionary divergence of human CLEC18 paralogs, we conducted a comprehensive analysis using various resources, including human and non-human primate reference genome assemblies, human pangenome assemblies, and long-read-based whole-genome and -transcriptome sequencing datasets. RESULTS: We uncovered paralogous sequence variants (PSVs) and polymorphic variants (PVs) of human CLEC18 proteins, and identified distinct signatures specific to each CLEC18 paralog. Furthermore, we unveiled a novel segmental duplication for human CLEC18A gene. By comparing CLEC18 across human and non-human primates, our research showed that the CLEC18 paralogy probably occurred in the common ancestor of human and closely related non-human primates, and the lipid-binding CAP/SCP/TAPS domain of CLEC18 is more diverse than its glycan-binding CTLD. Moreover, we found that certain amino acids alterations at variant positions are exclusive to human CLEC18 paralogs. CONCLUSIONS: Our findings offer a comprehensive profiling of the intricate variations and evolutionary characteristics of human CLEC18.


Assuntos
Evolução Molecular , Variação Genética , Lectinas Tipo C , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Animais , Primatas/genética
2.
Adv Biol (Weinh) ; 8(3): e2300416, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38143273

RESUMO

Cerebral infarction is one of the most common diseases for aged people. Compound Tongluo Decoction (CTLD), a classic traditional Chinese Medicine prescription, has been widely used in the treatment of ischemic cerebral infarction. Transient middle cerebral artery occlusion (tMCAO) rat model is established for the animal experiment and oxygen-glucose deprivation and reperfusion (OGD/R) human umbilical vein endothelial cells (HUVECs) model are established for the cell experiment. This also use Nrf2-/- rats to detect the role of nuclear factor erythroid 2-related factor 2 (Nrf2). Longa score, Evans blue staining, brain water content measurement, and histological observation are done. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and other ferroptosis-related components are detected respectively. In the vivo experiment, CTLD relieved ischemia-reperfusion (IR) injury symptoms and attenuated IR injury in brain tissues of tMCAO rats by relieving peroxidation injury in brain tissues and inhibiting ferroptosis in tMCAO rats. Moreover, CTLD reversed OGD/R-induced oxidative damage of endothelial cells via suppressing ferroptosis. After knocking out the Nrf2 gene, the protective effect of CTLD is sharply reduced. This study put forward that CTLD can inhibit ferroptosis in I/R-injured vascular endothelium by regulating Nrf2/ARE/SLC7A11 signaling to improve the relative symptoms of rats after cerebral I/R injury, thus providing a viable treatment option for cerebrovascular disease.


Assuntos
Lesões Encefálicas , Medicamentos de Ervas Chinesas , Ferroptose , Traumatismo por Reperfusão , Humanos , Animais , Ratos , Idoso , Fator 2 Relacionado a NF-E2/genética , Encéfalo , Isquemia , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Infarto Cerebral , Transdução de Sinais , Células Endoteliais da Veia Umbilical Humana , Sistema y+ de Transporte de Aminoácidos
3.
J Biomol Struct Dyn ; 41(16): 7757-7767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36120991

RESUMO

White Spot disease is a devastating disease of shrimps caused by White Spot Syndrome Virus in multifarious shrimp species. At present there is no absolute medication to suppress the disease hence, there is an urgent need for development of drug against the virus. Molecular interaction between viral envelope protein VP28 and shrimp receptor protein especially chitins play a pivotal role in ingression of WSSV. In the present study, we have tried to shed light on structural aspects of lectin protein in Marsupenaeus japonicus (MjsvCL). A structural insight to the CTLD-domain of MjsvCL has facilitated the understanding of the binding mechanism between the two proteins that is responsible for entry of WSSV into shrimps. Further, incorporation of molecular dynamics simulation and MMPBSA studies revealed the affinity of binding and certain hotspot residues, which are critical for association of both the proteins. For the first time we have proposed that these amino acids are quintessential for formation of VP28-MjsvCL complex and play crucial role in entry of WSSV into shrimps. Targeting the interaction between VP28 and CTLD of MjsvCL may possibly serve as a potential drug target. The current study provides information for better understanding the interaction between VP28 and MjsvCL that could be a plausible site for future inhibitors against WSSV in shrimps.Communicated by Ramaswamy H. Sarma.

4.
Comput Struct Biotechnol J ; 20: 5790-5812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382179

RESUMO

The relevance of protein-glycan interactions in immunity has long been underestimated. Yet, the immune system possesses numerous classes of glycan-binding proteins, so-called lectins. Of specific interest is the group of myeloid C-type lectin receptors (CLRs) as they are mainly expressed by myeloid cells and play an important role in the initiation of an immune response. Myeloid CLRs represent a major group amongst pattern recognition receptors (PRRs), placing them at the center of the rapidly growing field of glycoimmunology. CLRs have evolved to encompass a wide range of structures and functions and to recognize a large number of glycans and many other ligands from different classes of biopolymers. This review aims at providing the reader with an overview of myeloid CLRs and selected ligands, while highlighting recent insights into CLR-ligand interactions. Subsequently, methodological approaches in CLR-ligand research will be presented. Finally, this review will discuss how CLR-ligand interactions culminate in immunological functions, how glycan mimicry favors immune escape by pathogens, and in which way immune responses can be affected by CLR-ligand interactions in the long term.

5.
Acta Pharm Sin B ; 11(9): 2798-2818, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589398

RESUMO

Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD.

6.
FEBS Open Bio ; 11(7): 1827-1840, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075727

RESUMO

Immunoglobulin E (IgE) is a central regulatory and triggering molecule of allergic immune responses. IgE's interaction with CD23 modulates both IgE production and functional activities.CD23 is a noncanonical immunoglobulin receptor, unrelated to receptors of other antibody isotypes. Human CD23 is a calcium-dependent (C-type) lectin-like domain that has apparently lost its carbohydrate-binding capability. The calcium-binding site classically required for carbohydrate binding in C-type lectins is absent in human CD23 but is present in the murine molecule. To determine whether the absence of this calcium-binding site affects the structure and function of human CD23, CD23 mutant proteins with increasingly "murine-like" sequences were generated. Restoration of the calcium-binding site was confirmed by NMR spectroscopy, and structures of mutant human CD23 proteins were determined by X-ray crystallography, although no electron density for calcium was observed. This study offers insights into the evolutionary differences between murine and human CD23 and some of the functional differences between CD23 in different species.


Assuntos
Cálcio , Receptores de IgE , Animais , Sítios de Ligação , Cálcio/metabolismo , Cristalografia por Raios X , Humanos , Imunoglobulina E/metabolismo , Lectinas Tipo C , Camundongos , Receptores de IgE/química , Receptores de IgE/metabolismo
7.
Infect Genet Evol ; 83: 104321, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32302697

RESUMO

Bearded dragon adenovirus 1 (BDAdV-1), also known as agamid adenovirus 1, has been described worldwide as a prevalent infectious agent of the inland bearded dragon (Pogona vitticeps), the most common squamate exotic pet reptile. Previous limited sequence data of the adenoviral DNA polymerase and hexon genes indicated that BDAdV-1 is a member of genus Atadenovirus family Adenoviridae. Atadenoviruses infect ruminants, marsupials, testudine reptiles and birds, yet the genus has been shown to be of squamate reptile origin. Here, we report a screening survey along with the complete genome sequence of BDAdV-1, derived directly from the sample of a deceased juvenile dragon showing central nervous system signs prior to passing. The BDAdV-1 genome is 35,276 bp and contains 32 putative genes. Its genome organization is characteristic of the members of genus Atadenovirus, however, a divergent LH3 gene indicates structural interactions of different nature compared to other genus members such as snake adenovirus 1. We identified five novel open reading frames (ORFs), three of which encode proteins of the C-type lectin-like domain (CTLD) superfamily. ORF3 has a CTLD group II-like domain architecture displaying structural similarity with natural killer cell surface receptors and with an alphaherpesviral virulence factor gene for neurotropism, UL45. ORF4 and 6 are extremely long compared to typical adenoviral right-end genes and possibly encode members of the CTLD superfamily with novel, previously undescribed domain architectures. BDAdV-1 is the hitherto most divergent member of genus Atadenovirus providing new insights on adenoviral diversity, evolution and pathogenesis.


Assuntos
Adenoviridae/genética , Genoma Viral , Lagartos/virologia , Proteínas Virais/química , Adenoviridae/isolamento & purificação , Animais , Lectinas Tipo C/química , Filogenia , Domínios Proteicos , Proteínas Virais/genética
8.
J Struct Biol ; 207(3): 295-300, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271865

RESUMO

M-type phospholipase A2 receptor (PLA2R) is a member of the mannose receptor family. Recent evidence shows that PLA2R is a major autoantigen causing idiopathic membranous nephropathy (IMN), which is an autoimmune disease and one of the most common causes for nephrotic syndrome in adults. The epitope mapping data suggest that the major epitopes of PLA2R locate at the CysR, CTLD1 and CTLD7 domains. However, due to the lack of the high-resolution structural information, it is unclear how the autoantibodies interact with PLA2R. Here we determine the crystal structure of the CTLD7 domain of PLA2R at 1.8 Å, showing that it adopts a typical CTLD fold, and the structural alignments also provide hints for the potential antibody binding regions. In addition, the high-resolution structural information of CTLD7 could be applied to identify the epitopes for autoantibodies, which would facilitate the therapeutic strategies against IMN.


Assuntos
Autoantígenos/química , Epitopos/química , Glomerulonefrite Membranosa/imunologia , Domínios Proteicos , Receptores da Fosfolipase A2/química , Sequência de Aminoácidos , Autoanticorpos/imunologia , Autoanticorpos/metabolismo , Autoantígenos/imunologia , Autoantígenos/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Epitopos/imunologia , Epitopos/metabolismo , Glomerulonefrite Membranosa/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Receptores da Fosfolipase A2/imunologia , Receptores da Fosfolipase A2/metabolismo , Homologia de Sequência de Aminoácidos
9.
Front Immunol ; 10: 280, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863400

RESUMO

Immune-modulatory effects of ß-glucans are generally considered beneficial to fish health. Despite the frequent application of ß-glucans in aquaculture practice, the exact receptors and downstream signalling remains to be described for fish. In mammals, Dectin-1 is a member of the C-type lectin receptor (CLR) family and the best-described receptor for ß-glucans. In fish genomes, no clear homologue of Dectin-1 could be identified so far. Yet, in previous studies we could activate carp macrophages with curdlan, considered a Dectin-1-specific ß-(1,3)-glucan ligand in mammals. It was therefore proposed that immune-modulatory effects of ß-glucan in carp macrophages could be triggered by a member of the CLR family activating the classical CLR signalling pathway, different from Dectin-1. In the current study, we used primary macrophages of common carp to examine immune modulation by ß-glucans using transcriptome analysis of RNA isolated 6 h after stimulation with two different ß-glucan preparations. Pathway analysis of differentially expressed genes (DEGs) showed that both ß-glucans regulate a comparable signalling pathway typical of CLR activation. Carp genome analysis identified 239 genes encoding for proteins with at least one C-type Lectin Domains (CTLD). Narrowing the search for candidate ß-glucan receptors, based on the presence of a conserved glucan-binding motif, identified 13 genes encoding a WxH sugar-binding motif in their CTLD. These genes, however, were not expressed in macrophages. Instead, among the ß-glucan-stimulated DEGs, a total of six CTLD-encoding genes were significantly regulated, all of which were down-regulated in carp macrophages. Several candidates had a protein architecture similar to Dectin-1, therefore potential conservation of synteny of the mammalian Dectin-1 region was investigated by mining the zebrafish genome. Partial conservation of synteny with a region on the zebrafish chromosome 16 highlighted two genes as candidate ß-glucan receptor. Altogether, the regulation of a gene expression profile typical of a signalling pathway associated with CLR activation and, the identification of several candidate ß-glucan receptors, suggest that immune-modulatory effects of ß-glucan in carp macrophages could be a result of signalling mediated by a member of the CLR family.


Assuntos
Carpas/imunologia , Proteínas de Peixes/imunologia , Lectinas Tipo C/imunologia , Macrófagos/imunologia , Transcriptoma/imunologia , beta-Glucanas/imunologia , Animais , Carpas/genética , Carpas/metabolismo , Células Cultivadas , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Lectinas Tipo C/classificação , Lectinas Tipo C/genética , Macrófagos/metabolismo , Filogenia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sintenia/genética , Sintenia/imunologia , Transcriptoma/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo , beta-Glucanas/metabolismo
10.
Mol Oncol ; 12(3): 356-372, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29316206

RESUMO

The C-type lectin-like domain of CLEC14a (CLEC14a-C-type lectin-like domain [CTLD]) is a key domain that mediates endothelial cell-cell contacts in angiogenesis. However, the role of CLEC14a-CTLD in pathological angiogenesis has not yet been clearly elucidated. In this study, through complementarity-determining region grafting, consecutive deglycosylation, and functional isolation, we generated a novel anti-angiogenic human monoclonal antibody that specifically targets CLEC14a-CTLD and that shows improved stability and homogeneity relative to the parental antibody. We found that this antibody directly inhibits CLEC14a-CTLD-mediated endothelial cell-cell contact and simultaneously downregulates expression of CLEC14a on the surface of endothelial cells. Using various in vitro and in vivo functional assays, we demonstrated that this antibody effectively suppresses vascular endothelial growth factor (VEGF)-dependent angiogenesis and tumor angiogenesis of SNU182 human hepatocellular carcinoma, CFPAC-1 human pancreatic cancer, and U87 human glioma cells. Furthermore, we also found that this antibody significantly inhibits tumor angiogenesis of HCT116 and bevacizumab-adapted HCT116 human colorectal cancer cells. These findings suggest that antibody targeting of CLEC14a-CTLD has the potential to suppress VEGF-dependent angiogenesis and tumor angiogenesis and that CLEC14a-CTLD may be a novel anti-angiogenic target for VEGF-dependent angiogenesis and tumor angiogenesis.


Assuntos
Anticorpos Monoclonais/farmacologia , Moléculas de Adesão Celular/metabolismo , Imunoglobulina G/farmacologia , Lectinas Tipo C/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Moléculas de Adesão Celular/genética , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imunoglobulina G/imunologia , Lectinas Tipo C/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/imunologia , Neovascularização Fisiológica/imunologia , Fator A de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
PeerJ ; 4: e2692, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27896028

RESUMO

Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1). Experimental blocking of the SR ligand binding site with the inhibitor fucoidan reduced the ability of S. minutum to colonize A. pallida suggesting that host SRs play a role in host-symbiont recognition. In addition, incubation of symbiotic anemones with fucoidan elicited an immune response, indicating that host SRs function in immune modulation that results in host tolerance of the symbionts.

12.
J Immunol Methods ; 439: 67-73, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27742562

RESUMO

CD93 belongs to the group XIV C-type lectin like domain (CTLD) and is closely related to thrombomodulin (CD141). Although CD93 is known to be involved in the regulation of cell adhesion and phagocytosis, its role in innate immunity remains to be fully investigated. Critically, published data about CD141 suggest that CD93 CTLD could be involved in the control of inflammation. In order to address further functional and structural analyses, we expressed human CD93 CTLD with several disulfide bonds in an E. coli expression system. As the E. coli cytoplasm is a reducing compartment, production of disulfide-bond proteins remains a challenge. Hence, we decided to over express CD93 CTLD in commercially available strains of E. coli and co-expressed a sulfhydryl oxidase (Erv1p) and a disulfide isomerase (DsbC). This strategy led to high yield expression of a native form of CD93 CTLD. NMR studies revealed that Ca2+ was not able to bind to CD93 CTLD. We also showed that the recombinant protein could alter LPS pro-inflammatory activity on THP1. This work provides new tool for further functional and structural studies to decipher the functions associated to the CTLD of CD93. This approach may also be used for others members of the group XIV C-type lectin like domain (CD141, CD248 and CLec14A).


Assuntos
Clonagem Molecular/métodos , Citoplasma/metabolismo , Dissulfetos/metabolismo , Escherichia coli/metabolismo , Glicoproteínas de Membrana/biossíntese , Receptores de Complemento/biossíntese , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular , Dissulfetos/química , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Oxirredutases/biossíntese , Oxirredutases/genética , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/biossíntese , Isomerases de Dissulfetos de Proteínas/genética , Domínios Proteicos , Receptores de Complemento/química , Receptores de Complemento/genética , Proteínas Recombinantes/biossíntese , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Proteins ; 84(9): 1304-11, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27238500

RESUMO

Mouse Nkrp1a receptor is a C-type lectin-like receptor expressed on the surface of natural killer cells that play an important role against virally infected and tumor cells. The recently solved crystal structure of Nkrp1a raises questions about a long loop region which was uniquely extended from the central region in the crystal. To understand the functional significance of the loop, the solution structure of Nkrp1a using nuclear magnetic resonance (NMR) spectroscopy was determined. A notable difference between the crystal and NMR structure of Nkrp1a appears in the conformation of the long loop region. While the extended loop points away from the central core and mediates formation of a domain swapped dimer in the crystal, the solution structure is monomeric with the loop tightly anchored to the central region. The findings described the first solution structure in the Nkrp1 family and revealed intriguing similarities and differences to the crystal structure. Proteins 2016; 84:1304-1311. © 2016 Wiley Periodicals, Inc.


Assuntos
Subfamília B de Receptores Semelhantes a Lectina de Células NK/química , Motivos de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Espectroscopia de Ressonância Magnética , Camundongos , Subfamília B de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Cell Cycle ; 14(10): 1583-95, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950192

RESUMO

Statins are largely used in clinics in the treatment of patients with cardiovascular diseases for their effect on lowering circulating cholesterol. Lectin-like oxidized low-density lipoprotein (LOX-1), the primary receptor for ox-LDL, plays a central role in the pathogenesis of atherosclerosis and cardiovascular disorders. We have recently shown that chronic exposure of cells to lovastatin disrupts LOX-1 receptor cluster distribution in plasma membranes, leading to a marked loss of LOX-1 function. Here we investigated the molecular mechanism of statin-mediated LOX-1 inhibition and we demonstrate that all tested statins are able to displace the binding of fluorescent ox-LDL to LOX-1 by a direct interaction with LOX-1 receptors in a cell-based binding assay. Molecular docking simulations confirm the interaction and indicate that statins completely fill the hydrophobic tunnel that crosses the C-type lectin-like (CTLD) recognition domain of LOX-1. Classical molecular dynamics simulation technique applied to the LOX-1 CTLD, considered in the entire receptor structure with or without a statin ligand inside the tunnel, indicates that the presence of a ligand largely increases the dimer stability. Electrophoretic separation and western blot confirm that different statins binding stabilize the dimer assembly of LOX-1 receptors in vivo. The simulative and experimental results allow us to propose a CTLD clamp motion, which enables the receptor-substrate coupling. These findings reveal a novel and significant functional effect of statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Receptores Depuradores Classe E/metabolismo , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Dimerização , Corantes Fluorescentes/química , Células HEK293 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Lovastatina/química , Lovastatina/metabolismo , Lovastatina/farmacologia , Microscopia de Fluorescência , Simulação de Acoplamento Molecular , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Receptores Depuradores Classe E/antagonistas & inibidores , Receptores Depuradores Classe E/genética
15.
Biochem Biophys Res Commun ; 438(2): 340-5, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23892036

RESUMO

The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), the major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, is overexpressed in atherosclerotic lesions. LOX-1 specific inhibitors, urgently necessary to reduce the rate of atherosclerotic and inflammation processes, are not yet available. We have designed and synthesized a new modified oxidized phospholipid, named PLAzPC, which plays to small scale the ligand-receptor recognition scheme. Molecular docking simulations confirm that PLAzPC disables the hydrophobic component of the ox-LDL recognition domain and allows the interaction of the l-lysine backbone charged groups with the solvent and with the charged/polar residues located around the edges of the LOX-1 hydrophobic tunnel. Binding assays, in a cell model system expressing human LOX-1 receptors, confirm that PLAzPC markedly inhibits ox-LDL binding to LOX-1 with higher efficacy compared to previously identified inhibitors.


Assuntos
Fosfolipídeos/química , Receptores Depuradores Classe E/antagonistas & inibidores , Animais , Aterosclerose/metabolismo , Células COS , Chlorocebus aethiops , DNA/química , Desenho de Fármacos , Endotélio Vascular/metabolismo , Humanos , Ligantes , Lisina/química , Simulação de Acoplamento Molecular , Oxigênio/química , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA