Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxicol Rep ; 4: 83-88, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28959629

RESUMO

Pollution of the aquatic environment by heavy metals has become a worldwide problem. Most heavy metals exhibit toxic waste on aquatic organisms. Cadmium (Cd) is a highly toxic metal which affects aquatic organisms acutely and chronically. Planktonic calanoid copepods are the secondary dominant producers of pelagic ecosystems and play a considerable role in the transfer of energy and organic matter from primary producers to higher trophic levels. We investigated the effect of cadmium chloride on biochemical responses of the planktonic calanoid copepods Centropages ponticus which is a key species in the Mediterranean Sea. The response of copepods to cadmium chloride was examined under laboratory-controlled conditions during a 72-h exposure. Catalase (CAT), Glutathion Reductase (GR), Glutathione Peroxidase (GPx), Glutathione-S-Transferase (GST) and Acetylcholinesterase (AChE) were analyzed for cadmium chloride treatments (0, 0.2 and 0.4 µg/L) after 24, 48 and 72 h. Additionally, the thiobarbituric reactive species assay was used to evaluate lipid peroxidation (LPO) level of the copepod. In this study, it is observed that contents of protein increased gradually with an increase in concentrations of metals and exposure time. Our findings showed that cadmium chloride directly influenced malondialdehyde (MDA) levels in the treated copepods hinting that the copepods had suffered from oxidative damage. During exposure, the Cd treatments significantly influenced the biochemical markers (CAT, GR, GPx, GST and AChE). Thus, Centropages ponticus could be used as a suitable bioindicator of exposure to Cd using biochemicals markers.

2.
Eur J Pharmacol ; 789: 98-108, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27397430

RESUMO

In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 µΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300µM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30µM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30µM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell.


Assuntos
Fenômenos Eletrofisiológicos/efeitos dos fármacos , Átrios do Coração/citologia , Hesperidina/farmacologia , Canal de Potássio Kv1.5/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Relação Dose-Resposta a Droga , Expressão Gênica , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia
3.
Food Chem ; 205: 81-8, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27006217

RESUMO

Ash derived from energy generation is used as a source of minerals in livestock feeds. The microbial biosensor recApr-Luc2 was built to detect genotoxic hazard in recycled ash. Escherichia coli SOS gene (recA, lexA, dinI and umuC) expression in response to cisplatin-induced DNA damage led to the selection of the recA promoter. The biosensor required functional RecA expression to respond to genotoxic heavy metals (Cr>Cd≈Pb), and polluted ash induced a strong recApr-Luc2 response. In human liver and intestinal cells, heavy metals induced acute toxicity (Cr>Cd>Pb) at concentrations sufficient to activate recApr-Luc2. Cytostatic effects, including genotoxicity, were cell- and metal-dependent, apart from Cr. In agreement with the recApr-Luc2 bioassay, Cr had the strongest effect in all cells. In conclusion, recApr-Luc2 could be useful for evaluating the genotoxic risk of pollutants present in ash that might be concentrated in animal products and, thus, entering the human food chain.


Assuntos
Técnicas Biossensoriais/métodos , Cinza de Carvão/química , Gado/crescimento & desenvolvimento , Metais Pesados/análise , Mutagênicos/análise , Resposta SOS em Genética/efeitos dos fármacos , Ração Animal/análise , Animais , Células CACO-2 , Dieta , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Cadeia Alimentar , Contaminação de Alimentos/análise , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Luciferases de Vaga-Lume/genética , Metais Pesados/toxicidade , Mutagênicos/toxicidade , Recombinases Rec A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA