Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(3): 680-695, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34505622

RESUMO

In land plants and algae, cellulose is important for strengthening cell walls and preventing breakage due to physical forces. Though our understanding of cellulose production by cellulose synthases (CESAs) has seen significant advances for several land plant and bacterial species, functional characterization of this fundamental protein is absent in red algae. Here we identify CESA gene candidates in the calcifying red alga Calliarthron tuberculosum using sequence similarity-based approaches, and elucidate their phylogenetic relationship with other CESAs from diverse taxa. One gene candidate, CtCESA1, was closely related to other putative red algal CESA genes. To test if CtCESA1 encoded a true cellulose synthase, CtCESA1 protein was expressed and purified from insect and yeast expression systems. CtCESA1 showed glucan synthase activity in glucose tracer assays. CtCESA1 activity was relatively low when compared with plant and bacterial CESA activity. In an in vitro assay, a predicted N-terminal starch-binding domain from CtCESA1 bound red algal floridean starch extracts, representing a unique domain in red algal CESAs not present in CESAs from other lineages. When the CtCESA1 gene was introduced into Arabidopsis thaliana cesa mutants, the red algal CtCESA1 partially rescued the growth defects of the primary cell wall cesa6 mutant, but not cesa3 or secondary cell wall cesa7 mutants. A fluorescently tagged CtCESA1 localized to the plasma membrane in the Arabidopsis cesa6 mutant background. This study presents functional evidence validating the sequence annotation of red algal CESAs. The relatively low activity of CtCESA1, partial complementation in Arabidopsis, and presence of unique protein domains suggest that there are probably functional differences between the algal and land plant CESAs.


Assuntos
Glucosiltransferases , Rodófitas , Parede Celular/metabolismo , Glucosiltransferases/metabolismo , Filogenia , Rodófitas/enzimologia , Rodófitas/genética
2.
Planta ; 250(6): 1867-1879, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31482328

RESUMO

MAIN CONCLUSION: Cellulosic secondary walls evolved convergently in coralline red macroalgae, reinforcing tissues against wave-induced breakage, despite differences in cellulose abundance, microfibril orientation, and wall structure. Cellulose-enriched secondary cell walls are the hallmark of woody vascular plants, which develop thickened walls to support upright growth and resist toppling in terrestrial environments. Here we investigate the striking presence and convergent evolution of cellulosic secondary walls in coralline red algae, which reinforce thalli against forces applied by crashing waves. Despite ostensible similarities to secondary wall synthesis in land plants, we note several structural and mechanical differences. In coralline red algae, secondary walls contain three-times more cellulose (~ 22% w/w) than primary walls (~ 8% w/w), and their presence nearly doubles the total thickness of cell walls (~ 1.2 µm thick). Field emission scanning electron microscopy revealed that cellulose bundles are cylindrical and lack any predominant orientation in both primary and secondary walls. His-tagged recombinant carbohydrate-binding module differentiated crystalline and amorphous cellulose in planta, noting elevated levels of crystalline cellulose in secondary walls. With the addition of secondary cell walls, Calliarthron genicular tissues become significantly stronger and tougher, yet remain remarkably extensible, more than doubling in length before breaking under tension. Thus, the development of secondary walls contributes to the strong-yet-flexible genicular tissues that enable coralline red algae to survive along wave-battered coastlines throughout the NE Pacific. This study provides an important evolutionary perspective on the development and biomechanical significance of secondary cell walls in a non-model, non-vascular plant.


Assuntos
Parede Celular/metabolismo , Celulose/metabolismo , Alga Marinha/metabolismo , Fenômenos Biomecânicos , Parede Celular/ultraestrutura , Microfibrilas/metabolismo , Microscopia Eletrônica de Varredura , Alga Marinha/ultraestrutura
3.
J Exp Biol ; 219(Pt 12): 1833-42, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307541

RESUMO

Flexibility is key to survival for seaweeds exposed to the extreme hydrodynamic environment of wave-washed rocky shores. This poses a problem for coralline algae, whose calcified cell walls make them rigid. Through the course of evolution, erect coralline algae have solved this problem by incorporating joints (genicula) into their morphology, allowing their fronds to be as flexible as those of uncalcified seaweeds. To provide the flexibility required by this structural innovation, the joint material of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than the tissue of other algal fronds. Here, we report on experiments that reveal the viscoelastic properties of this material. On the one hand, its compliance is independent of the rate of deformation across a wide range of deformation rates, a characteristic of elastic solids. This deformation rate independence allows joints to maintain their flexibility when loaded by the unpredictable - and often rapidly imposed - hydrodynamic force of breaking waves. On the other hand, the genicular material has viscous characteristics that similarly augment its function. The genicular material dissipates much of the energy absorbed as a joint is deformed during cyclic wave loading, which potentially reduces the chance of failure by fatigue, and the material accrues a limited amount of deformation through time. This limited creep increases the flexibility of the joints while preventing them from gradually stretching to the point of failure. These new findings provide the basis for understanding how the microscale architecture of genicular cell walls results in the adaptive mechanical properties of coralline algal joints.


Assuntos
Adaptação Biológica , Rodófitas/fisiologia , Alga Marinha/fisiologia , Movimentos da Água , Evolução Biológica , Fenômenos Biomecânicos , Rodófitas/anatomia & histologia , Estresse Mecânico
4.
J Exp Biol ; 219(Pt 12): 1843-50, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307542

RESUMO

By incorporating joints into their otherwise rigid fronds, erect coralline algae have evolved to be as flexible as other seaweeds, which allows them to thrive - and even dominate space - on wave-washed shores around the globe. However, to provide the required flexibility, the joint tissue of Calliarthron cheilosporioides, a representative articulated coralline alga, relies on an extraordinary tissue that is stronger, more extensible and more fatigue resistant than that of other algae. Here, we used the results from recent experiments to parameterize a conceptual model that links the microscale architecture of cell walls to the adaptive mechanical properties of joint tissue. Our analysis suggests that the theory of discontinuous fiber-wound composite materials (with cellulose fibrils as the fibers and galactan gel as the matrix) can explain key aspects of the material's mechanics. In particular, its adaptive viscoelastic behavior can be characterized by two, widely separated time constants. We speculate that the short time constant (∼14 s) results from the viscous response of the matrix to the change in cell-wall shape as a joint is stretched, a response that allows the material both to remain flexible and to dissipate energy as a frond is lashed by waves. We propose that the long time constant (∼35 h), is governed by the shearing of the matrix between cellulose fibrils. The resulting high apparent viscosity ensures that joints avoid accumulating lethal deformation in the course of a frond's lifetime. Our synthesis of experimental measurements allows us to draw a chain of mechanistic inference from molecules to cell walls to fronds and community ecology.


Assuntos
Adaptação Biológica , Rodófitas/fisiologia , Alga Marinha/fisiologia , Movimentos da Água , Evolução Biológica , Fenômenos Biomecânicos , Modelos Biológicos , Rodófitas/ultraestrutura , Alga Marinha/ultraestrutura , Estresse Mecânico
5.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2554-6, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26258508

RESUMO

454 GS FLX Titanium sequencing data were used to obtain the complete mitochondrial genome of Calliarthron tuberculosum (26,469 bp). The mitogenome contains 44 genes, including 2 ribosomal RNA, 19 transfer RNA, 5 ribosomal proteins, 1 ymf, 2 open reading frames (ORFs) and 16 genes involved in cellular respiration. The secY and rps12 are overlapped by 69 bp. rps3 and rpl16 also have a 45 bp overlapped region. Except for open reading frames near stem-loop region, the results show Calliarthron tuberculosum mtDNA has a high similarity with other Florideophyceae algae mitogenomes in gene synteny, structure and gene content. Phylogeny analysis indicates a close genetic relationship of Calliarthron tuberculosum with Sporolithon durum.


Assuntos
Genoma Mitocondrial/genética , Rodófitas/genética , DNA Mitocondrial/genética , Genoma de Planta/genética , Fases de Leitura Aberta/genética , Filogenia , Proteínas de Plantas/genética , RNA Ribossômico/genética , RNA de Transferência/genética , Rodófitas/classificação , Análise de Sequência de DNA
6.
J Phycol ; 50(2): 310-21, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26988188

RESUMO

Intertidal macroalgae endure light, desiccation, and temperature variation associated with sub-merged and emerged conditions on a daily basis. Physiological stresses exist over the course of the entire tidal cycle, and physiological differences in response to these stresses likely contribute to spatial separation of species along the shore. For example, marine species that have a high stress tolerance can live higher on the shore and are able to recover when the tide returns, whereas species with a lower stress tolerance may be relegated to living lower on the shore or in tidepools, where low tide stresses are buffered. In this study, we monitored the physiological responses of the tidepool coralline Calliarthron tuberculosum (Postels and Ruprecht) E.Y. Dawson and the nontidepool coralline Corallina vancouveriensis Yendo during simulated tidal conditions to identify differences in physiology that might underlie differences in habitat. During high tide, Corallina was more photosynthetically active than Calliarthron as light levels increased. During low tide, Corallina continued to out-perform Calliarthron when submerged in warming tidepools, but photosynthesis abruptly halted for both species when emerged in air. Surprisingly, pigment composition did not differ, suggesting that light harvesting does not account for this difference. Additionally, Corallina was more effective at resisting desiccation by retaining water in its branches. When the tide returned, only Corallina recovered from combined temperature and desiccation stresses associated with emergence. This study broadens our understanding of intertidal algal physiology and provides a new perspective on the physiological and morphological underpinnings of habitat partitioning.

7.
J Exp Biol ; 216(Pt 20): 3772-80, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24068348

RESUMO

Intertidal organisms are subjected to intense hydrodynamic forces as waves break on the shore. These repeated insults can cause a plant or animal's structural materials to fatigue and fail, even though no single force would be sufficient to break the organism. Indeed, the survivorship and maximum size of at least one species of seaweed is set by the accumulated effects of small forces rather than the catastrophic imposition of a single lethal force. One might suppose that fatigue would be especially potent in articulated coralline algae, in which the strain of the entire structure is concentrated in localized joints, the genicula. However, previous studies of joint morphology suggest an alternative hypothesis. Each geniculum is composed of a single tier of cells, which are attached at their ends to the calcified segments of the plant (the intergenicula) but have minimal connection to each other along their lengths. This lack of neighborly attachment potentially allows the weak interfaces between cells to act as 'crack stoppers', inhibiting the growth of fatigue cracks. We tested this possibility by repeatedly loading fronds of Calliarthron cheilosporioides, a coralline alga common on wave-washed shores in California. When repeatedly loaded to 50-80% of its breaking strength, C. cheilosporioides commonly survives more than a million stress cycles, with a record of 51 million. We show how this extraordinary fatigue resistance interacts with the distribution of wave-induced water velocities to set the limits to size in this species.


Assuntos
Antozoários/fisiologia , Rodófitas/fisiologia , Estresse Mecânico , Animais , Análise de Regressão , Resistência ao Cisalhamento , Torção Mecânica , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA