Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.928
Filtrar
1.
J Cell Mol Med ; 28(16): e70025, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164826

RESUMO

Metastasis is a crucial stage in tumour progression, and cancer-associated fibroblasts (CAFs) support metastasis through their participation in extracellular matrix (ECM) stiffness. CD248 is a possible biomarker for non-small cell lung cancer (NSCLC)-derived CAFs, but its role in mediating ECM stiffness to promote NSCLC metastasis is unknown. We investigated the significance of CD248+ CAFs in activating the Hippo axis and promoting connective tissue growth factor (CTGF) expression, which affects the stromal collagen I environment and improves ECM stiffness, thereby facilitating NSCLC metastasis. In this study, we found that higher levels of CD248 in CAFs induced the formation of collagen I, which in turn increased extracellular matrix stiffness, thereby enabling NSCLC cell infiltration and migration. Hippo axis activation by CD248+ CAFs induces CTGF expression, which facilitates the formation of the collagen I milieu in the stromal matrix. In a tumour lung metastasis model utilizing fibroblast-specific CD248 gene knockout mice, CD248 gene knockout mice showed a significantly reduced ability to develop tumour lung metastasis compared to that of WT mice. Our findings demonstrate that CD248+ CAFs activate the Hippo pathway, thereby inducing CTGF expression, which in turn facilitates the collagen I milieu of the stromal matrix, which promotes NSCLC metastasis.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Fator de Crescimento do Tecido Conjuntivo , Matriz Extracelular , Via de Sinalização Hippo , Neoplasias Pulmonares , Camundongos Knockout , Proteínas Serina-Treonina Quinases , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Animais , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Matriz Extracelular/metabolismo , Camundongos , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Linhagem Celular Tumoral , Antígenos CD/metabolismo , Antígenos CD/genética , Metástase Neoplásica , Transdução de Sinais , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Microambiente Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-39162054

RESUMO

BACKGROUND AND AIM: Cancer-associated fibroblasts (CAFs) are abundant in colon cancer (CC) patients with a poor prognosis. Here, the molecular regulatory mechanism of CAFs on CC growth and metastasis was explored. METHODS: The genes' expression was monitored using RT-qPCR, immunoblotting, and immunohistochemistry. Cell viability and proliferation were found using CCK-8 and clone formation assays. The cell migration and invasion were probed using wound healing and Transwell. Co-IP was utilized for ascertaining the interaction between AKT and the ring finger protein, LIM domain interacting (RLIM). The in vivo murine subcutaneous tumor model and the metastasis model were built to further ascertain the axis. RESULTS: The result showed that CAFs motivate the growth and activate the PI3K/AKT pathway of CC cells via paracrine cartilage oligomeric matrix protein (COMP). Moreover, RLIM promoted the growth of CC cells, and its protein stability was regulated by AKT through its phosphorylation. Further, RLIM facilitated the ubiquitination and degradation of promyelocytic leukemia protein (PML). The in vitro and in vivo tests found that PML overexpression could inhibit CC's growth and metastasis, which were enhanced by CAFs. CONCLUSION: The COMP excreted from CAFs enhances the CC's growth and metastasis through regulating the RLIM/PML axis, supplying a new potential target for the cure of CC.

3.
Int Immunopharmacol ; 141: 113001, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39186835

RESUMO

In triple-negative breast cancer (TNBC), the tumor immune microenvironment (TIME) is a highly heterogeneous ecosystem that exerts indispensable roles in tumorigenesis and tumor progression. Cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs) are the main matrix components in the TIME of TNBC. CAFs mediate the edesmoplastic response, which is a major driver of the immunosuppressive microenvironment to promote tumor growth. In addition, CAAs, a type of tumor-educated adipocyte, participate in crosstalk with breast cancer and are capable of secreting various cytokines, adipokines and chemokines, especially C-C Motif Chemokine Ligand 2 (CCL2), resulting in changes of cancer cell phenotype and function. Therefore, how to treat tumors by regulating the CAFs and the secretion of CCL2 by CAAs in TIME is investigated here. Our research group previously found that rhein (Rhe) has been identified as effective against CAFs, while hesperidin (Hes) could effectively diminish CCL2 secretion by CAAs. Inspired by the above, we developed unique PLGA-based nanoparticles loaded with Rhe and Hes (RH-NP) using the emulsion solvent diffusion method. The RH-NP particles have an average size of 114.1 ± 0.98 nm. RH-NP effectively reduces CAFs and inhibits CCL2 secretion by CAAs, promoting increased infiltration of cytotoxic T cells and reducing immunosuppressive cell presence within tumors. This innovative, safe, low-toxic, and highly effective anti-tumor strategy could be prospective in TNBC treatment.

4.
Front Oncol ; 14: 1429095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39188683

RESUMO

Objective: To investigate the effects of a PD-1 inhibitor combined with a bevacizumab monoclonal antibody on tumor immune cells in patients with first-line treatment failure in MSS/pMMR advanced colorectal cancer. Methods: Control group consisted of 50 patients treated with the FOLFIRI combined with Bevacizumab regimen. The experimental group consisted of 60 patients treated with the Sintilimab combined with Bevacizumab regimen. By comparing the expression levels of CD8+ T lymphocytes, TAMs, and CAFs before and after treatment, short-term efficacy after treatment, and adverse drug reactions between the two groups, we comprehensively evaluated the impact of Sintilimab combined with Bevacizumab on patients with MSS/pMMR advanced colorectal cancer who failed first-line treatment. Results: There was a statistically significant difference in the percentage of CD8+ T lymphocytes, TAMs, and CAFs before and after treatment between the two groups (P<0.05);Immunohistochemical scoring of CD8+ T lymphocytes, TAMs, and CAFs showed significant differences between the groups post-treatment (P<0.05). The experimental group demonstrated statistically significant differences in immunohistochemical scoring of CD8+ T lymphocytes, TAMs, and CAFs before and after treatment (P<0.05). There was a statistically significant difference in the therapeutic effect between the two groups of tumors (P<0.05). The experimental group had greater PFS, mPFS, ORR, and DCR than did the control group. There was no statistically significant difference in the occurrence rate of drug-related adverse reactions after treatment between the two groups (P>0.05). The results of the Cox proportional hazards model analysis indicate that age, gender, and group are independent risk factors affecting MSS/pMMR advanced colorectal cancer patients treated with second-line therapy in this study. Patients aged ≤60 years, male patients, and those in the experimental group showed better treatment responses in this study. Conclusion: By administering immune checkpoint inhibitors in combination with bevacizumab to patients with advanced colorectal cancer with MSS/pMMR disease for whom first-line treatment failed, not only did the patients' prognosis improve, but the adverse drug reactions were also safe and controllable.

5.
Immunol Invest ; : 1-14, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189542

RESUMO

INTRODUCTION: Human oral squamous cell carcinoma (OSCC) is the most common type of oral cancer and has a poor survival rate. Cell-cell communication between OSCC cells and cancer-associated fibroblasts (CAFs) plays important roles in OSCC progression. We previously demonstrated that CAFs promote OSCC cell migration and invasion. However, how OSCC cells influence CAFs proliferation is unknown. METHODS: Knockdown of PVT1 was confirmed using lentivirus infection technique. CAFs in tissues were identified by staining the cells with α-SMA using immunohistochemical technique. CCK-8 assay was used to evaluate cell proliferation. The mRNA level of a gene was measured by qRT-PCR. Secreted TGF-ß were detected using ELISA assay. RESULTS: We found that knockdown of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was associated with a low density of CAFs in xenograft tumors in mice; further analysis revealed that PVT1 in OSCC cells induced CAF proliferation through transforming growth factor (TGF)-ß. DISCUSSION: Our results demonstrate that lncRNA PVT1 in tumor cells participates in CAF development in OSCC by regulating TGF-ß. This study revealed a new mechanism by which PVT1 regulates OSCC progression and PVT1 is a potential therapeutic target in OSCC.

6.
Br J Pharmacol ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129178

RESUMO

BACKGROUND AND PURPOSE: Although our previous data indicated that claudin 18 isoform 2 (CLDN18.2)-targeted chimeric antigen receptor (CAR) T cells displayed remarkable clinical efficacy in CLDN18.2-positive gastric cancer, their efficacy is limited in pancreatic ductal adenocarcinoma (PDAC). The tumour microenvironment (TME) is one of the main obstacles to the efficacy of CAR-T and remodelling the TME may be a possible way to overcome this obstacle. The TME of PDAC is characterized by abundant cancer-related fibroblasts (CAFs), which hinder the infiltration and function of CLDN18.2-targeted CAR-T cells. The expression of fibroblast activation protein alpha (FAP) is an important feature of active CAFs, providing potential targets for eliminating CAFs. EXPERIMENTAL APPROACH: In this study, we generated 10 FAP/CLDN 18.2 dual-targeted CAR-T cells and evaluated their anti-tumour ability in vitro and in vivo. KEY RESULTS: Compared with conventional CAR-T cells, some dual-targeted CAR-T cells showed improved therapeutic effects in mouse pancreatic cancers. Further, dual-targeted CAR-T cells with better anti-tumour effect could suppress the recruitment of myeloid-derived suppressor cells (MDSCs) to improve the immunosuppressive TME, which contributes to the survival of CD8+ T cells. Moreover, dual-targeted CAR-T cells reduced the exhaustion of T cells in transforming TGF-ß dependent manner. CONCLUSION AND IMPLICATIONS: The dual-targeted CAR-T cells obtained enhancement of T effector function, inhibition of T cell exhaustion, and improvement of tumour microenvironment. Our findings provide a theoretical rationale for dual-targeted FAP/CLDN 18.2 CAR-T cells therapy in PDAC.

7.
Front Cell Dev Biol ; 12: 1375543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139454

RESUMO

Colorectal cancer (CRC) is the third most common cancer and has ranked the third leading cause in cancerassociated death globally. Metastasis is the leading cause of death in colorectal cancer patients. The role of tumor microenvironment (TME) in colorectal cancer metastasis has received increasing attention. As the most abundant cell type in the TME of solid tumors, cancer-associated fibroblasts (CAFs) have been demonstrated to have multiple functions in advancing tumor growth and metastasis. They can remodel the extracellular matrix (ECM) architecture, promote epithelial-mesenchymal transition (EMT), and interact with cancer cells or other stromal cells by secreting growth factors, cytokines, chemokines, and exosomes, facilitating tumor cell invasion into TME and contributing to distant metastasis. This article aims to analyze the sources and heterogeneity of CAFs in CRC, as well as their role in invasion and metastasis, in order to provide new insights into the metastasis mechanism of CRC and its clinical applications.

8.
Comput Biol Med ; 180: 108989, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142223

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) are one of the major components of prostate stromal cells, which play a crucial part in tumor development and treatment resistance. This study aimed to establish a model of CAFs-related microRNAs (miRNAs) to assess prognostic differences, tumor microenvironments, and screening of anticancer drugs by integrating data from single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing (buRNA-seq). METHODS: scRNA-seq and buRNA-seq data of primary prostate cancer (PCa) were downloaded from Gene Expression Omnibus and The Cancer Genome Atlas databases. Statistical methods including Least absolute shrinkage and selection operator (Lasso), Lasso penalized, Random Forest, Random Forest Combination, and Support Vector Machine (SVM) were performed to select hub miRNAs. Pathway analyses and assessment of infiltrating immune cells were conducted using Gene Set Enrichment Analysis and the CIBERSORT algorithm. The expression of CAFs-related miRNAs in fibroblast cell lines were validated through quantitative real-time PCR. Cell Counting Kit 8 (CCK8), wound-healing, clone formation, and cell migration assays were used to explore cell proliferation, growth, and migration in vitro. A mouse xenograft model was established to investigate the effect of CAFs on tumor growth in vivo. RESULTS: Through single-cell transcriptomics analysis in 34 PCa patients, 89 CAFs-related mRNAs were identified. A prognostic model based on 9 CAFs-related miRNAs (hsa-miR-1258, hsa-miR-133b, hsa-miR-222-3p, hsa-miR-145-3p, hsa-miR-493-5p, hsa-miR-96-5p, hsa-miR-15b-5p, hsa-miR-106b-5p, and hsa-miR-191-5p) was established to predict biochemical recurrence (BCR). We have determined through two prediction methods that NVP-TAE684 may be the optimal targeted therapy drug for treating CAFs. Downregulation of hsa-miR-106b-5p in CAFs significantly suppressed cell proliferation, migration, and colony formation in vitro. In vivo studies using a xenograft model further confirmed that hsa-miR-106b-5p downregulation significantly reduced tumor growth. CONCLUSION: Our findings conducted an integrated bioinformatic analysis to develop a CAFs-related miRNAs model that provides prognostic insights into individualized and precise treatment for prostate adenocarcinoma patients. Downregulation of miR-106b-5p in CAFs significantly suppressed tumor growth, suggesting a potential therapeutic target for cancer treatment.

9.
J Biochem Mol Toxicol ; 38(9): e23769, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39152098

RESUMO

Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment (TME) and can induce functional polarization of tumor macrophages. This study aimed to explore the effect of CAFs-derived exosome LINC01833 on the malignant biological behavior of non-small cell lung cancer (NSCLC) cells and its mechanism. Tumor tissues (n = 3) and adjacent noncancerous tissues (n = 3) were collected from patients with NSCLC, and fibroblasts (CAF, NF) were isolated from the two tissues. Expression of LINC01833/miR-335-5p/VAPA in NSCLC clinical tissues and cell lines was detected by RT-qPCR. Exosomes of CAFs and NFs were isolated by ultracentrifugation. Cell proliferation, migration, invasion, and M2 macrophage polarization were detected by MTT, transwell, wound-healing assay, and flow cytometry assay, while western blot was used to verify the expression of M2 macrophage polarization-related proteins. Tumor volume weight and M2 macrophage polarization were detected by tumor xenografts in nude mice. LINC01833 was highly expressed in NSCLC tumor tissues and cells. Knockdown of LINC01833 exosomes could significantly inhibit proliferation, migration, invasion of NSCLC cells, and M2 macrophage polarization of THP-1 cells, while simultaneous knockdown of miR-335-5p on the above basis could reverse the effect of knockdown of LINC01833. In vivo experiments also indicated that knockdown of LINC01833 exosomes suppressed tumor growth and M2 macrophage polarization. CAF-derived LINC01833 exosomes can promote the proliferation, migration and invasion of NSCLC cells and M2 macrophage polarization by inhibiting miR-335-5p and regulating VAPA activity.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Camundongos Nus , MicroRNAs , RNA Longo não Codificante , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Exossomos/metabolismo , Exossomos/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Proliferação de Células , Masculino , Feminino , Linhagem Celular Tumoral , Movimento Celular , Células A549 , Camundongos Endogâmicos BALB C
10.
Mol Biomed ; 5(1): 32, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138733

RESUMO

Endometrial cancer (UCEC) is one of three major malignant tumors in women. The HOX gene regulates tumor development. However, the potential roles of HOX in the expression mechanism of multiple cell types and in the development and progression of tumor microenvironment (TME) cell infiltration in UCEC remain unknown. In this study, we utilized both the The Cancer Genome Atlas (TCGA) database and International Cancer Genome Consortium (ICGC) database to analyze transcriptome data of 529 patients with UCEC based on 39 HOX genes, combing clinical information, we discovered HOX gene were a pivotal factor in the development and progression of UCEC and in the formation of TME diversity and complexity. Here, a new scoring system was developed to quantify individual HOX patterns in UCEC. Our study found that patients in the low HOX score group had abundant anti-tumor immune cell infiltration, good tumor differentiation, and better prognoses. In contrast, a high HOX score was associated with blockade of immune checkpoints, which enhances the response to immunotherapy. The Real-Time quantitative PCR (RT-qPCR) and Immunohistochemistry (IHC) exhibited a higher expression of the HOX gene in the tumor patients. We revealed that the significant upregulation of the HOX gene in the epithelial cells can activate signaling pathway associated with tumour invasion and metastasis through single-cell RNA sequencing (scRNA-seq), such as nucleotide metabolic proce and so on. Finally, a risk prognostic model established by the positive relationship between HOX scores and cancer-associated fibroblasts (CAFs) can predict the prognosis of individual patients by scRNA-seq and transcriptome data sets. In sum, HOX gene may serve as a potential biomarker for the diagnosis and prediction of UCEC and to develop more effective therapeutic strategies.


Assuntos
Neoplasias do Endométrio , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Humanos , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/imunologia , Neoplasias do Endométrio/patologia , Feminino , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Transcriptoma , Genes Homeobox/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Pessoa de Meia-Idade
11.
Life Sci ; 353: 122939, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094905

RESUMO

AIMS: Transactivation of insulin-growth-factor-receptor (IGF-1R) by angiotensin-II-type-1-receptor (AT-1R) was only demonstrated in vascular-smooth-muscle cells and has never been tested in breast-cancer (BC). This investigation addressed the impact of chronic AT-1R blockade by valsartan (Val) on possible concurrent AT-1R/IGF-1R signaling inhibition, regressing BC-tumor-microenvironment (TME) cellular components activation, and hindering BC development. MAIN METHODS: The effect of different Val doses (10, 20, 40 & 80 mg/kg/day for 490 days) was tested on dimethylbenz(a)anthracene (DMBA)-induced progesterone-promoted-BC in rats. The influence on intratumoral/circulating angiotensin-II (ANG-II) levels and AT-1R/Mas-R immunofluorescent-expression were assessed. The potential AT-1R/IGF-1R crosstalk within TME-BC-stem-cells (BCSCs) and cancer-associated-fibroblasts (CAFs) was evaluated by fluorescently marking these cells and locating the immunofluorescently-stained AT-1R/IGF-1R in them using confocal-laser-microscopy and further quantified by flow cytometry. In addition, the molecular alterations following blocking AT-1R were inspected including determining Src; crucial for IGF-1R transactivation by AT-1R, Notch-1; IGF-IR transcriptional-regulator, and PI3K/Akt &IL-6/STAT expression. Further, the suppression of CSCs' capabilities to maintain pluripotency, stemness features, epithelial-to-mesenchymal-transition (EMT), and angiogenesis was evaluated by assessing NANOG gene, aldehyde-dehydrogenase (ALDH), N-cadherin and vascular-endothelial-growth-factor (VEGF), respectively. Furthermore, the proliferative marker; Ki-67, was detected by immunostaining, and tumors were histologically graded using Elston-Ellis-modified-Scarff-Bloom-Richardson method. KEY FINDINGS: Prophylactic Val significantly reduced tumor size, prolonged latency, reduced tumor histopathologic grade, decreased circulating/intratumoral-ANG-II levels, increased Mas-R, and decreased AT1R expression. AT-1R/IGF-1R were co-expressed with a high correlation coefficient on CAFs/BCSCs. Moreover, Val significantly attenuated IGF-1R transactivation and transcriptional regulation via Src and Notch-1 genes' downregulation and reduced Src/IGF-IR-associated PI3K/Akt and IL-6/STAT3 signaling. Further, Val significantly decreased intratumoral NANOG, ALDH, N-cadherin, VEGF, and Ki-67 levels. SIGNIFICANCE: Chronic Val administration carries a potential for repurposing as adjuvant or conjunct therapy for patients at high risk for BC.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II , Neoplasias da Mama , Receptor Tipo 1 de Angiotensina , Receptor IGF Tipo 1 , Microambiente Tumoral , Valsartana , Animais , Feminino , Ratos , Valsartana/farmacologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor IGF Tipo 1/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ratos Sprague-Dawley
12.
Front Immunol ; 15: 1433679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39086477

RESUMO

Introduction: Fibroblast activation protein (FAP) overexpression on cancer-associated fibroblasts (CAFs) is associated with poor prognosis and worse clinical outcomes. Selective ablation of pro-tumorgenic FAP+ stromal cells with CAR-T cells may be a new therapeutic strategy. However, the clinical use of FAP-CAR T cells is suggested to proceed with caution for occasional poor efficacy and induction of on-target off-tumor toxicity (OTOT), including lethal osteotoxicity and cachexia. Hence, more investigations and preclinical trials are required to optimize the FAP-CAR T cells and to approve their safety and efficacy. Methods: In this study, we designed second-generation CAR T cells targeting FAP with 4-1BB as a co-stimulatory molecule, and tested their cytotoxicity against FAP-positive cells (hFAP-HT1080 cells and a variety of primary CAFs) in vitro and in Cell line-derived xenograft (CDX) and a patient-derived xenograft (PDX) model. Results: Results showed that our FAP-CAR T cells were powerfully potent in killing human and murine FAP-positive tumor cells and CAFs in multiple types of tumors in BALB/c and C57BL/6 mice and in patient-derived xenografts (PDX) model. And they were proved to be biologically safe and exhibit low-level OTOT. Discussion: Taken together, the human/murine cross-reactive FAP-CAR T cells were powerfully potent in killing human and murine FAP positive tumor cells and CAFs. They were biologically safe and exhibit low-level OTOT, warranting further clinical investigation into our FAP-CAR T cells.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Animais , Feminino , Humanos , Camundongos , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Endopeptidases , Gelatinases/imunologia , Gelatinases/metabolismo , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Serina Endopeptidases/imunologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Int J Oncol ; 65(3)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39092544

RESUMO

Subsequently to the publication of the above article, an interested reader drew to the authors' attention that the GAPDH bands shown for the western blots portrayed in Fig. 2 (associated with the α­SMA proteins) on p. 1482 were strikingly similar to the GAPDH bands associated with the CAF64 and NF64 experiments in Fig. 4 on p. 1485. After re­examining their original data, the authors have realized that the GAPDH protein bands correctly shown in Fig. 4 had inadvertently been included in Fig. 2. The revised version of Fig. 2, showing the GAPDH bands that were correctly associated with the α­SMA proteins, is shown opposite. The authors are grateful to the Editor of International Journal of Oncology for allowing them this opportunity to publish a Corrigendum, and all the authors agree to its publication. Note that this error did not grossly affect either the results or the conclusions reported in this study; furthermore, the authors apologize to the readership for any inconvenience caused. [International Journal of Oncology 45: 1479­1488, 2014; DOI: 10.3892/ijo.2014.2562].

14.
Biochim Biophys Acta Rev Cancer ; 1879(5): 189166, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111710

RESUMO

Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.

15.
J Cancer Res Clin Oncol ; 150(8): 388, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120743

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a crucial role in the progression of colorectal cancer (CRC). However, the impact of CAF subpopulation trajectory differentiation on CRC remains unclear. METHODS: In this study, we first explored the trajectory differences of CAFs subpopulations using bulk and integrated single-cell sequencing data, and then performed consensus clustering of CRC samples based on the trajectory differential genes of CAFs subpopulations. Subsequently, we analyzed the heterogeneity of CRC subtypes using bioinformatics. Finally, we constructed relevant prognostic signature using machine learning and validated them using spatial transcriptomic data. RESULTS: Based on the differential genes of CAFs subpopulation trajectory differentiation, we identified two CRC subtypes (C1 and C2) in this study. Compared to C1, C2 exhibited worse prognosis, higher immune evasion microenvironment and high CAF characteristics. C1 was primarily associated with metabolism, while C2 was primarily associated with cell metastasis and immune regulation. By combining 101 combinations of 10 machine learning algorithms, we developed a High-CAF risk signatures (HCAFRS) based on the C2 characteristic gene. HCAFRS was an independent prognostic factor for CRC and, when combined with clinical parameters, significantly predicted the overall survival of CRC patients. HCAFRS was closely associated with epithelial-mesenchymal transition, angiogenesis, and hypoxia. Furthermore, the risk score of HCAFRS was mainly derived from CAFs and was validated in the spatial transcriptomic data. CONCLUSION: In conclusion, HCAFRS has the potential to serve as a promising prognostic indicator for CRC, improving the quality of life for CRC patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Microambiente Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/metabolismo , Prognóstico , Microambiente Tumoral/genética , Análise por Conglomerados , Aprendizado de Máquina , Biomarcadores Tumorais/genética , Transcriptoma , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica/métodos , Feminino , Masculino
16.
Jpn J Clin Oncol ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180719

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis due to its low surgical eligibility and resistance to chemotherapy. Abundant stroma is characteristic of PDAC, and cancer-associated fibroblasts (CAFs) are a major stromal constituent, contributing to chemoresistance. Because neoadjuvant chemotherapy (NAC) is included in PDAC treatment as a standard regimen, the role of CAFs in NAC resistance must be studied. Although type IV collagen (COLIV) is present in the tumor of PDAC, the association between COLIV and disease advancement of NAC-treated PDAC is unclear. METHODS: Using a cohort of NAC-treated patients with PDAC, we examined clinicopathological data and conducted immunohistochemical analysis of COLIV in tissue specimens prepared from surgically resected pancreas. RESULTS AND CONCLUSIONS: Our analysis revealed that ~50% of the cases were positive for COLIV in the stroma and diffuse COLIV staining was an independent poor prognosis factor alongside high serum CA19-9 before NAC treatment (>37 U/mL) and postsurgical residual tumors. Based on these findings, we propose that stromal COLIV staining can be used to predict prognosis in NAC-treated patients with PDAC after surgery. Additionally, these findings suggest a possibility that stromal COLIV staining indicates resistance to anticancer drugs and/or contributes to malignancy in PDAC.

17.
Heliyon ; 10(15): e35306, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165997

RESUMO

This study intended to determine the molecular subtypes of liver hepatocellular carcinoma (LIHC) on the strength of anoikis-related genes (ARGs) and to assess their prognostic value and prospective relationship with immune cell infiltration and cancer-associated fibroblasts (CAFs). Univariate Cox regression analysis yielded 66 prognosis-related ARGs and classified LIHC into two distinct subtypes, with subtype A demonstrating overexpression of most prognosis-related ARGs and a significant survival disadvantage. Furthermore, a reliable prediction model was developed using ARGs to evaluate the risk of LIHC patients. This model served as an independent prognostic indicator and a quantitative tool for clinical prognostic prediction. Additionally, subtype-specific differences in immune cell infiltration were observed, and the risk score was potentially linked to immune-related characteristics. Moreover, the study identified a significant association between CAF score and LIHC prognosis, with a low CAF score indicating a favorable patient prognosis. In conclusion, this study reveals the molecular mechanisms underlying the development and progression of LIHC and identifies potential therapeutic targets for the disease.

18.
Cancer Cell Int ; 24(1): 299, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182054

RESUMO

It is accepted that cancer stem cells (CSCs) are key to the occurrence, progression, drug resistance, and recurrence of bladder cancer (BLCA). Here, we aimed to characterize the landscapes of CSCs and investigate the biological and clinical signatures based on a prognostic model constructed by genes associated with CSCs. The malignant epithelial cells were discovered and sorted into six clusters through single cell analysis. C2 was identified as the CSCs. The signaling involved in the interactions between C2, cancer-associated fibroblasts (CAFs), and immune cells mainly consisted of MK, THBS, ANGPTL, VISFATIN, JAM, and ncWNT pathways. The CSC-like prognostic index (CSCLPI) constructed by the random survival forest was a reliable risk factor for BLCA and had a stable and powerful effect on predicting the overall survival of patients with BLCA. The level of CAFs was higher among patients with higher CSCLPI scores, suggesting that CAFs play a significant role in regulating biological characteristics. The CSCLPI-developed survival prediction nomogram has the potential to be applied clinically to predict the 1-, 2-, 3-, and 5-year overall survival of patients with BLCA. The CSCLPI can be used for prognostic prediction and drug treatment evaluation in the clinic.

19.
J Transl Med ; 22(1): 759, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138492

RESUMO

BACKGROUND: Oral cancer poses a significant health challenge due to limited treatment protocols and therapeutic targets. We aimed to investigate the invasive margins of gingivo-buccal oral squamous cell carcinoma (GB-OSCC) tumors in terms of the localization of genes and cell types within the margins at various distances that could lead to nodal metastasis. METHODS: We collected tumor tissues from 23 resected GB-OSCC samples for gene expression profiling using digital spatial transcriptomics. We monitored differential gene expression at varying distances between the tumor and its microenvironvent (TME), and performed a deconvulation study and immunohistochemistry to identify the cells and genes regulating the TME. RESULTS: We found that the tumor-stromal interface (a distance up to 200 µm between tumor and immune cells) is the most active region for disease progression in GB-OSCC. The most differentially expressed apex genes, such as FN1 and COL5A1, were located at the stromal ends of the margins, and together with enrichment of the extracellular matrix (ECM) and an immune-suppressed microenvironment, were associated with lymph node metastasis. Intermediate fibroblasts, myocytes, and neutrophils were enriched at the tumor ends, while cancer-associated fibroblasts (CAFs) were enriched at the stromal ends. The intermediate fibroblasts transformed into CAFs and relocated to the adjacent stromal ends where they participated in FN1-mediated ECM modulation. CONCLUSION: We have generated a functional organization of the tumor-stromal interface in GB-OSCC and identified spatially located genes that contribute to nodal metastasis and disease progression. Our dataset might now be mined to discover suitable molecular targets in oral cancer.


Assuntos
Fibroblastos , Regulação Neoplásica da Expressão Gênica , Metástase Linfática , Neoplasias Bucais , Células Mieloides , Microambiente Tumoral , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/genética , Metástase Linfática/patologia , Fibroblastos/patologia , Fibroblastos/metabolismo , Células Mieloides/patologia , Células Mieloides/metabolismo , Fibroblastos Associados a Câncer/patologia , Fibroblastos Associados a Câncer/metabolismo , Perfilação da Expressão Gênica , Feminino , Masculino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/genética
20.
J Transl Med ; 22(1): 645, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982511

RESUMO

BACKGROUND: Cancer-associated fibroblast (CAF)-cancer cell crosstalk (CCCT) plays an important role in tumor microenvironment shaping and immunotherapy response. Current prognostic indexes are insufficient to accurately assess immunotherapy response in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to develop a CCCT-related gene prognostic index (CCRGPI) for assessing the prognosis and response to immune checkpoint inhibitor (ICI) therapy of HNSCC patients. METHODS: Two cellular models, the fibroblast-cancer cell indirect coculture (FCICC) model, and the fibroblast-cancer cell organoid (FC-organoid) model, were constructed to visualize the crosstalk between fibroblasts and cancer cells. Based on a HNSCC scRNA-seq dataset, the R package CellChat was used to perform cell communication analysis to identify gene pairs involved in CCCT. Least absolute shrinkage and selection operator (LASSO) regression was then applied to further refine the selection of these gene pairs. The selected gene pairs were subsequently subjected to stepwise regression to develop CCRGPI. We further performed a comprehensive analysis to determine the molecular and immune characteristics, and prognosis associated with ICI therapy in different CCRGPI subgroups. Finally, the connectivity map (CMap) analysis and molecular docking were used to screen potential therapeutic drugs. RESULTS: FCICC and FC-organoid models showed that cancer cells promoted the activation of fibroblasts into CAFs, that CAFs enhanced the invasion of cancer cells, and that CCCT was somewhat heterogeneous. The CCRGPI was developed based on 4 gene pairs: IGF1-IGF1R, LGALS9-CD44, SEMA5A-PLXNA1, and TNXB-SDC1. Furthermore, a high CCRGPI score was identified as an adverse prognostic factor for overall survival (OS). Additionally, a high CCRGPI was positively correlated with the activation of the P53 pathway, a high TP53 mutation rate, and decreased benefit from ICI therapy but was inversely associated with the abundance of various immune cells, such as CD4+ T cells, CD8+ T cells, and B cells. Moreover, Ganetespib was identified as a potential drug for HNSCC combination therapy. CONCLUSIONS: The CCRGPI is reliable for predicting the prognosis and immunotherapy response of HSNCC patients and may be useful for guiding the individualized treatment of HNSCC patients.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias de Cabeça e Pescoço , Aprendizado de Máquina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Prognóstico , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Comunicação Celular/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Resultado do Tratamento , Linhagem Celular Tumoral , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA