Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 660
Filtrar
1.
bioRxiv ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38979343

RESUMO

Candida glabrata exhibits innate resistance to azole antifungal drugs but also has the propensity to rapidly develop clinical drug resistance. Azole drugs, which target Erg11, is one of the three major classes of antifungals used to treat Candida infections. Despite their widespread use, the mechanism controlling azole-induced ERG gene expression and drug resistance in C. glabrata has primarily revolved around Upc2 and/or Pdr1. In this study, we determined the function of two zinc cluster transcription factors, Zcf27 and Zcf4, as direct but distinct regulators of ERG genes. Our phylogenetic analysis revealed C. glabrata Zcf27 and Zcf4 as the closest homologs to Saccharomyces cerevisiae Hap1. Hap1 is a known zinc cluster transcription factor in S. cerevisiae in controlling ERG gene expression under aerobic and hypoxic conditions. Interestingly, when we deleted HAP1 or ZCF27 in either S. cerevisiae or C. glabrata, respectively, both deletion strains showed altered susceptibility to azole drugs, whereas the strain deleted for ZCF4 did not exhibit azole susceptibility. We also determined that the increased azole susceptibility in a zcf27Δ strain is attributed to decreased azole-induced expression of ERG genes, resulting in decreased levels of total ergosterol. Surprisingly, Zcf4 protein expression is barely detected under aerobic conditions but is specifically induced under hypoxic conditions. However, under hypoxic conditions, Zcf4 but not Zcf27 was directly required for the repression of ERG genes. This study provides the first demonstration that Zcf27 and Zcf4 have evolved to serve distinct roles allowing C. glabrata to adapt to specific host and environmental conditions.

2.
Genetics ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028831

RESUMO

Azole resistance in the pathogenic yeast Candida glabrata is a serious clinical complication and increasing in frequency. The majority of resistant organisms have been found to contain a substitution mutation in the Zn2Cys6 zinc cluster-containing transcription factor Pdr1. These mutations typically lead to this factor driving high, constitutive expression of target genes like the ATP-binding cassette transporter-encoding gene CDR1. Overexpression of Cdr1 is required for the observed elevated fluconazole resistance exhibited by strains containing one of these hyperactive PDR1 alleles. While the identity of hyperactive PDR1 alleles has been extensively documented, the mechanisms underlying how these gain-of-function (GOF) forms of Pdr1 lead to elevated target gene transcription are not well understood. We have used a tandem affinity purification (TAP)-tagged form of Pdr1 to identify coactivator proteins that biochemically purify with the wild-type and two different GOF forms of Pdr1. Three coactivator proteins were found to associate with Pdr1: the SWI/SNF complex Snf2 chromatin remodeling protein and two different components of the SAGA complex, Spt7 and Ngg1. We found that deletion mutants lacking either SNF2 or SPT7 exhibited growth defects, even in the absence of fluconazole challenge. To overcome these issues, we employed a conditional degradation system to acutely deplete these coactivators and determined that loss of either coactivator complex, SWI/SNF or SAGA, caused defects in Pdr1-dependent transcription. A double degron strain that could be depleted for both SWI/SNF and SAGA exhibited a profound defect in PDR1 autoregulation, revealing that these complexes work together to ensure high level Pdr1-dependent gene transcription.

3.
Iran J Microbiol ; 16(2): 273-279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38854989

RESUMO

Background and Objectives: The presence of fungi in the respiratory tract as mycobiome, particularly Candida species (spp.), remains a serious problem due to increasing numbers of immunocompromised patients. The confirmed reliable existence of these pathogens due to frequent colonization is essential. This investigation aimed to recognize Candida spp. among isolates from bronchoalveolar lavage of immunocompromised and critically ill patients and to evaluate their susceptibility to antimycotic drugs. Materials and Methods: Bronchoalveolar lavage fluid was collected from 161 hospitalized patients presenting with suspected respiratory fungal infection /colonization. The specimens were examined by standard molecular and mycological assays. Candida spp. were recognized with sequence assessment of the D1-D2 section of the large subunit ribosomal DNA. The susceptibility of Candida isolates to common antimycotic drugs was distinguished by standard broth microdilution. Results: Seventy-one clinical isolates of Candida spp. were recognized. Candida albicans was the most frequent, followed by C. glabrata, C. krusei (Pichia kudriavzevii), C. dubliniensis, C. parapsilosis, and C. tropicalis. We found 5.1% of C. albicans isolates and 8% of C. glabrata isolates to show resistance to fluconazole. The whole of the Candida spp. were sensitive to amphotericin B and caspofungin. Conclusion: This study demonstrated that C. albicans and C. glabrata are the most common isolates of bronchoalveolar lavage fluid in patients, and the drug susceptibility screening confirmed that amphotericin B and caspofungin are effective against Candida spp. but some C. glabrata and C. albicans isolates showed resistance to fluconazole.

4.
Front Pediatr ; 12: 1397456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827222

RESUMO

Urinary tract infections (UTIs) associated with indwelling urinary catheterization (IUC) in premature newborns (PNBs) pose a significant challenge in neonatal intensive care units (NICUs) due to the vulnerability of this population to infections and the necessity of invasive procedures. While bacterial UTIs have historically been predominant, there is a rising incidence of fungal pathogens, particularly non-albicans Candida strains like Candida glabrata and Candida tropicalis, attributed to broad-spectrum antibiotic use. Diagnosis of fungal UTIs in a PNB relies on culturing Candida spp. from properly collected urine samples, particularly critical in very low birth weight (VLBW) PNBs because of the risk of invasive candidiasis and associated complications. We present a case of an extremely premature newborn (EPNB) successfully treated for a UTI caused by C. glabrata with micafungin. Our case exhibits micafungin as a potentially safe and effective alternative for treating C. glabrata UTIs in neonates.

5.
Bio Protoc ; 14(6): e4958, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38841286

RESUMO

Candida glabrata is an opportunistic pathogen that may cause serious infections in an immunocompromised host. C. glabrata cell wall proteases directly interact with host cells and affect yeast virulence and host immune responses. This protocol describes methods to purify ß-1,3-glucan-bonded cell wall proteases from C. glabrata. These cell wall proteases are detached from the cell wall glucan network by lyticase treatment, which hydrolyzes ß-1,3-glucan bonds specifically without rupturing cells. The cell wall supernatant is further fractioned by centrifugal devices with cut-offs of 10 and 50 kDa, ion-exchange filtration (charge), and gel filtration (size exclusion). The enzymatic activity of C. glabrata proteases is verified with MDPF-gelatin zymography and the degradation of gelatin is visualized by loss of gelatin fluorescence. With this procedure, the enzymatic activities of the fractions are kept intact, differing from methods used in previous studies with trypsin digestion of the yeast cell wall. The protein bands may be eventually located from a parallel silver-stained gel and identified with LC-MS/MS spectrometry. The advantage of this methodology is that it allows further host protein degradation assays; the protocol is also suitable for studying other Candida yeast species. Key features • Uses basic materials and laboratory equipment, enabling low-cost studies. • Facilitates the selection and identification of proteases with certain molecular weights. • Enables further functional studies with host proteins, such as structural or immune response-related, or enzymes and candidate protease inhibitors (e.g., from natural substances). • This protocol has been optimized for C. glabrata but may be applied with modifications to other Candida species.

6.
Front Microbiol ; 15: 1419530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903792

RESUMO

The arginine transporter Can1 is a multifunctional protein of the conventional yeast Saccharomyces cerevisiae. Apart from facilitating arginine uptake, Can1 plays a pivotal role in regulating proline metabolism and maintaining cellular redox balance. Here, we report a novel function of Can1 in the control of yeast biofilm formation. First, the S. cerevisiae CAN1 gene knockout strain displayed a significant growth delay compared to the wild-type strain. Our genetic screening revealed that the slow growth of the CAN1 knockout strain is rescued by a functional deficiency of the FLO8 gene, which encodes the master transcription factor associated with biofilm formation, indicating that Can1 is involved in biofilm formation. Intriguingly, the CAN1 knockout strain promoted the Flo11-dependent aggregation, leading to higher biofilm formation. Furthermore, the CAN1 knockout strain of the pathogenic yeast Candida glabrata exhibited slower growth and higher biofilm formation, similar to S. cerevisiae. More importantly, the C. glabrata CAN1 gene knockout strain showed severe toxicity to macrophage-like cells and nematodes. The present results could help to elucidate both the molecular mechanism underlying yeast biofilm formation and the role it plays. Future investigations may offer insights that contribute to development of antibiofilm agents.

7.
Microbiol Mol Biol Rev ; 88(2): e0002123, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38832801

RESUMO

SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.


Assuntos
Antifúngicos , Candida albicans , Candida glabrata , Candidíase , Farmacorresistência Fúngica , Candida glabrata/patogenicidade , Humanos , Candida albicans/patogenicidade , Candidíase/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Animais , Candidemia/microbiologia , Candidemia/epidemiologia , Filogenia , Interações Hospedeiro-Patógeno
8.
Med Mycol ; 62(6)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935913

RESUMO

Recognising the growing global burden of fungal infections, the World Health Organization (WHO) established an advisory group consisting of experts in fungal diseases to develop a Fungal Priority Pathogen List. Pathogens were ranked based on their research and development needs and perceived public health importance using a series of global surveys and pathogen characteristics derived from systematic reviews. This systematic review evaluates the features and global impact of invasive disease caused by Candida glabrata (Nakaseomyces glabrata). PubMed and Web of Science were searched for studies reporting on mortality, morbidity (hospitalization and disability), drug resistance (including isolates from sterile and non-sterile sites, since these reflect the same organisms causing invasive infections), preventability, yearly incidence, diagnostics, treatability, and distribution/emergence in the last 10 years. Candida glabrata (N. glabrata) causes difficult-to-treat invasive infections, particularly in patients with underlying conditions such as immunodeficiency, diabetes, or those who have received broad-spectrum antibiotics or chemotherapy. Beyond standard infection prevention and control measures, no specific preventative measures have been described. We found that infection is associated with high mortality rates and that there is a lack of data on complications and sequelae. Resistance to azoles is common and well described in echinocandins-in both cases, the resistance rates are increasing. Candida glabrata remains mostly susceptible to amphotericin and flucytosine. However, the incidence of the disease is increasing, both at the population level and as a proportion of all invasive yeast infections, and the increases appear related to the use of antifungal agents.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Organização Mundial da Saúde , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/epidemiologia , Candidíase/microbiologia , Candidíase/tratamento farmacológico , Saúde Global , Incidência
9.
Infect Drug Resist ; 17: 2017-2029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800581

RESUMO

Objective: To define the antifungal activity of n-butylphthalide alone or in combination with fluconazole in Candida glabrata and Candida tropicalis. Methods: The antifungal activity of n-butylphthalide alone and in combination with fluconazole was investigated by the classical broth microdilution method and the time-killing curve method. The QRT-PCR method was used to determine gene expressions changes of mitochondrial respiratory chain enzymes, drug efflux pumps and drug target enzymes in Candida glabrata and Candida tropicalis after n-butylphthalide treatment. Results: The MIC values of n-butylphthalide against Candida glabrata and Candida tropicalis ranged from 16 to 64 µg·mL-1. The FICI value of the combination of n-butylphthalide and fluconazole against drug-resistant Candida glabrata and Candida tropicalis ranged from 0.5001 to 0.5315 with partial synergism. Time-killing curves showed that 256 µg·mL-1 n-butylphthalide significantly inhibited the growth of drug-resistant colonies of Candida glabrata and Candida tropicalis, and 128 µg·mL-1 n-butylphthalide combined with 1 µg·mL-1 fluconazole had an additive effect. N-butylphthalide could alter the expression of mitochondrial respiratory chain enzymes COX1, COX2, COX3, and CYTB genes in Candida glabrata and Candida tropicalis (P< 0.05) and downregulate the expression of the drug efflux pump genes CDR1 and CDR2 in drug-resistant Candida glabrata to 3.36% and 3.65%, respectively (P<0.001), but did not affect the drug target enzyme ERG11 in drug-resistant Candida tropicalis. Conclusion: N-butylphthalide had antifungal activity against Candida glabrata and Candida tropicalis. N-butylphthalide improved the activity of fluconazole against drug-resistant Candida glabrata by affecting the expression of mitochondrial respiratory chain enzyme genes and reversing the high expression of drug efflux pump genes CDR1 and CDR2.

10.
Mycoses ; 67(6): e13750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38813959

RESUMO

BACKGROUND: The prevalence of Candida glabrata healthcare-associated infections is on the rise worldwide and in Lebanon, Candida glabrata infections are difficult to treat as a result of their resistance to azole antifungals and their ability to form biofilms. OBJECTIVES: The first objective of this study was to quantify biofilm biomass in the most virulent C. glabrata isolates detected in a Lebanese hospital. In addition, other pathogenicity attributes were evaluated. The second objective was to identify the mechanisms of azole resistance in those isolates. METHODS: A mouse model of disseminated systemic infection was developed to evaluate the degree of virulence of 41 azole-resistant C. glabrata collected from a Lebanese hospital. The most virulent isolates were further evaluated alongside an isolate having attenuated virulence and a reference strain for comparative purposes. A DNA-sequencing approach was adopted to detect single nucleotide polymorphisms (SNPs) leading to amino acid changes in proteins involved in azole resistance and biofilm formation. This genomic approach was supported by several phenotypic assays. RESULTS: All chosen virulent isolates exhibited increased adhesion and biofilm biomass compared to the isolate having attenuated virulence. The amino acid substitutions D679E and I739N detected in the subtelomeric silencer Sir3 are potentially involved- in increased adhesion. In all isolates, amino acid substitutions were detected in the ATP-binding cassette transporters Cdr1 and Pdh1 and their transcriptional regulator Pdr1. CONCLUSIONS: In summary, increased adhesion led to stable biofilm formation since mutated Sir3 could de-repress adhesins, while decreased azole susceptibility could result from mutations in Cdr1, Pdh1 and Pdr1.


Assuntos
Antifúngicos , Biofilmes , Candida glabrata , Candidíase , Farmacorresistência Fúngica , Mutação , Biofilmes/crescimento & desenvolvimento , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/isolamento & purificação , Candida glabrata/patogenicidade , Candida glabrata/fisiologia , Líbano , Animais , Camundongos , Farmacorresistência Fúngica/genética , Antifúngicos/farmacologia , Humanos , Virulência/genética , Candidíase/microbiologia , Proteínas Fúngicas/genética , Polimorfismo de Nucleotídeo Único , Modelos Animais de Doenças , Azóis/farmacologia , Testes de Sensibilidade Microbiana , Hospitais , Feminino
11.
Acta Biochim Pol ; 71: 11999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721306

RESUMO

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Assuntos
Antifúngicos , Bacillus subtilis , Candida glabrata , Permeabilidade da Membrana Celular , Lipopeptídeos , Testes de Sensibilidade Microbiana , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo
12.
BMC Microbiol ; 24(1): 154, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704559

RESUMO

BACKGROUND: Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS: In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS: The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS: The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.


Assuntos
Antifúngicos , Biofilmes , Candida albicans , Candida glabrata , Escherichia coli , Fluconazol , Glucosídeos Iridoides , Iridoides , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Glucosídeos Iridoides/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/fisiologia , Candida glabrata/genética , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Iridoides/farmacologia , Fluconazol/farmacologia , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Antibacterianos/farmacologia , Microscopia Eletrônica de Varredura
13.
Front Pharmacol ; 15: 1334419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708082

RESUMO

Introduction: Candida species are endowed with the ability to produce biofilms, which is one of the causes of pathogenicity, as biofilms protect yeasts from antifungal drugs. Candida glabrata (Nakaseomyces glabrata) is one of the most prevalent pathogenic yeasts in humans and a biofilm producer. Methods: The study was aimed at evaluating the combined effects of two highly promising antifungal biomolecules (AF4 and AF5) lipopeptide in nature, chromatographically purified to homogeneity from Bacillus subtilis (B. subtilis) and the standard antifungal fluconazole (at different concentrations) to demonstrate C. glabrata biofilm formation inhibition. Biofilm production and inhibition were evaluated by quantification of the biofilm biomass and metabolic activity using crystal violet (CV) staining and XTT reduction assays, respectively. Microscopic techniques such as confocal scanning laser microscopy (CSLM) and scanning electron microscopy (SEM) were employed to visualize biofilm formation and inhibition. Results and Discussion: Compared to untreated and fluconazole-treated biofilms, an enhanced in vitro anti-biofilm effect of the antifungal lipopeptides AF4/AF5 alone and their combinations with fluconazole was established. The lipopeptides AF4/AF5 alone at 8 and 16 µg/mL exhibited significant biomass and metabolic activity reductions. SEM and CSLM images provided evidence that the lipopeptide exposure results in architectural alterations and a significant reduction of C. glabrata biofilms, whereas (2', 7'-dichlorofluorescin diacetate (DCFDA) and propidium iodide (PI) analyses showed reactive oxygen species (ROS) generation along with membrane permeabilization. The estimation of exopolysaccharides (EPS) in AF4/AF5-treated biofilms indicated EPS reduction. The combinations of fluconazole (64/128 µg/mL) and AF4/AF5 lipopeptide (16 µg/mL) were found to significantly disrupt the mature (24 h) biofilms as revealed by CSLM and SEM studies. The CSLM images of biofilms were validated using COMSTAT. The FTIR-analyses indicate the antibiofilm effects of both lipopeptides on 24 h biofilms to support CSLM and SEM observations. The combinations of fluconazole (64/128 µg/mL) and AF4/AF5 lipopeptide were found to disrupt the mature biofilms; the study also showed that the lipopeptides alone have the potentials to combat C. glabrata biofilms. Taken together, it may be suggested that these lipopeptide leads can be optimized to potentially apply on various surfaces to either reduce or nearly eradicate yeast biofilms.

14.
Open Biol ; 14(5): 230315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38806144

RESUMO

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Assuntos
Candida glabrata , Células Dendríticas , Antígeno de Macrófago 1 , Linfócitos T Reguladores , beta-Glucanas , Candida glabrata/metabolismo , Candida glabrata/patogenicidade , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , beta-Glucanas/metabolismo , beta-Glucanas/farmacologia , Animais , Antígeno de Macrófago 1/metabolismo , Camundongos , Lectinas Tipo C/metabolismo , Candidíase/imunologia , Candidíase/microbiologia , Candidíase/metabolismo , Camundongos Endogâmicos C57BL
15.
Microbiol Spectr ; 12(6): e0012124, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38695556

RESUMO

Candidiasis places a significant burden on human health and can range from common superficial vulvovaginal and oral infections to invasive diseases with high mortality. The most common Candida species implicated in human disease is Candida albicans, but other species like Candida glabrata are emerging. The use of azole antifungals for treatment is limited by increasing rates of resistance. This study explores repositioning bisphosphonates, which are traditionally used for osteoporosis, as antifungal synergists that can improve and revitalize the use of azoles. Risedronate, alendronate, and zoledronate (ZOL) were tested against isolates from six different species of Candida, and ZOL produced moderate antifungal activity and strong synergy with azoles like fluconazole (FLC), particularly in C. glabrata. FLC:ZOL combinations had increased fungicidal and antibiofilm activity compared to either drug alone, and the combination prevented the development of antifungal resistance. Mechanistic investigations demonstrated that the synergy was mediated by the depletion of squalene, resulting in the inhibition of ergosterol biosynthesis and a compromised membrane structure. In C. glabrata, synergy compromised the function of membrane-bound multidrug transporters and caused an accumulation of reactive oxygen species, which may account for its acute sensitivity to FLC:ZOL. The efficacy of FLC:ZOL in vivo was confirmed in a Galleria mellonella infection model, where combinations improved the survival of larvae infected with C. albicans and C. glabrata to a greater extent than monotherapy with FLC or ZOL, and at reduced dosages. These findings demonstrate that bisphosphonates and azoles are a promising new combination therapy for the treatment of topical candidiasis. IMPORTANCE: Candida is a common and often very serious opportunistic fungal pathogen. Invasive candidiasis is a prevalent cause of nosocomial infections with a high mortality rate, and mucocutaneous infections significantly impact the quality of life of millions of patients a year. These infections pose substantial clinical challenges, particularly as the currently available antifungal treatment options are limited in efficacy and often toxic. Azoles are a mainstay of antifungal therapy and work by targeting the biosynthesis of ergosterol. However, there are rising rates of acquired azole resistance in various Candida species, and some species are considered intrinsically resistant to most azoles. Our research demonstrates the promising therapeutic potential of synergistically enhancing azoles with non-toxic, FDA-approved bisphosphonates. Repurposing bisphosphonates as antifungal synergists can bypass much of the drug development pipeline and accelerate the translation of azole-bisphosphonate combination therapy.


Assuntos
Antifúngicos , Azóis , Candida , Difosfonatos , Farmacorresistência Fúngica , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Azóis/farmacologia , Humanos , Difosfonatos/farmacologia , Candida/efeitos dos fármacos , Animais , Farmacorresistência Fúngica/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Fluconazol/farmacologia , Biofilmes/efeitos dos fármacos , Candida glabrata/efeitos dos fármacos , Candida albicans/efeitos dos fármacos
16.
Front Immunol ; 15: 1367048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585259

RESUMO

Objective: In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods: RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results: Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion: Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.


Assuntos
Candida glabrata , Candidíase , Animais , Camundongos , Candida glabrata/fisiologia , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Sirolimo/farmacologia , Camundongos Endogâmicos BALB C , Autofagia , Macrófagos , Serina-Treonina Quinases TOR/metabolismo , Mamíferos
17.
Fungal Genet Biol ; 172: 103891, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38621582

RESUMO

Candida glabrata (Nakaseomyces glabrata) is an emergent and opportunistic fungal pathogen that colonizes and persists in different niches within its human host. In this work, we studied five clinical isolates from one patient (P7), that have a clonal origin, and all of which come from blood cultures except one, P7-3, obtained from a urine culture. We found phenotypic variation such as sensitivity to high temperature, oxidative stress, susceptibility to two classes of antifungal agents, and cell wall porosity. Only isolate P7-3 is highly resistant to the echinocandin caspofungin while the other four isolates from P7 are sensitive. However, this same isolate P7-3, is the only one that displays susceptibility to fluconazole (FLC), while the rest of the isolates are resistant to this antifungal. We sequenced the PDR1 gene which encodes a transcription factor required to induce the expression of several genes involved in the resistance to FLC and found that all the isolates encode for the same Pdr1 amino acid sequence except for the last isolate P7-5, which contains a single amino acid change, G1099C in the putative Pdr1 transactivation domain. Consistent with the resistance to FLC, we found that the CDR1 gene, encoding the main drug efflux pump in C. glabrata, is highly overexpressed in the FLC-resistant isolates, but not in the FLC-sensitive P7-3. In addition, the resistance to FLC observed in these isolates is dependent on the PDR1 gene. Additionally, we found that all P7 isolates have a different proportion of cell wall carbohydrates compared to our standard strains CBS138 and BG14. In P7 isolates, mannan is the most abundant cell wall component, whereas ß-glucan is the most abundant component in our standard strains. Consistently, all P7 isolates have a relatively low cell wall porosity compared to our standard strains. These data show phenotypic and genotypic variability between clonal isolates from different niches within a single host, suggesting microevolution of C. glabrata during an infection.


Assuntos
Antifúngicos , Candida glabrata , Farmacorresistência Fúngica , Proteínas Fúngicas , Testes de Sensibilidade Microbiana , Candida glabrata/genética , Candida glabrata/efeitos dos fármacos , Antifúngicos/farmacologia , Humanos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fluconazol/farmacologia , Parede Celular/genética , Parede Celular/efeitos dos fármacos , Candidíase/microbiologia , Caspofungina/farmacologia , Evolução Molecular , Estresse Oxidativo/genética , Equinocandinas/farmacologia , Fatores de Transcrição/genética
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473787

RESUMO

The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, ß-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of ß-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of ß-aescin with alkylamidobetaines was examined. It has been shown that the combination of ß-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both ß-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.


Assuntos
Antifúngicos , Candida glabrata , Antifúngicos/farmacologia , Escina/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Biofilmes
19.
Med Mycol Case Rep ; 43: 100636, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435498

RESUMO

We report on a 64-year-old man with necrotizing pancreatitis related, invasive candidiasis, and candidemia. Despite a multidisciplinary management including antifungal therapy, endoscopic interventions and surgery, the patients' infection progressed and lead to colon perforation, retroperitoneal abscess formation, and polymicrobial bloodstream infections. Resistance to echinocandins in Candida glabrata further complicated the course. This report emphasizes the need for vigilant monitoring and exploring alternative therapeutic approaches for patients in critical conditions.

20.
mBio ; 15(4): e0007224, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38501869

RESUMO

Recent epidemiological studies documented an alarming increase in the prevalence of echinocandin-resistant (ECR) Candida glabrata blood isolates. ECR isolates are known to arise from a minor subpopulation of a clonal population, termed echinocandin persisters. Although it is believed that isolates with a higher echinocandin persistence (ECP) are more likely to develop ECR, the implication of ECP needs to be better understood. Moreover, replacing laborious and time-consuming traditional approaches to determine ECP levels with rapid, convenient, and reliable tools is imperative to advance our understanding of this emerging concept in clinical practice. Herein, using extensive ex vivo and in vivo systemic infection models, we showed that high ECP isolates are less effectively cleared by micafungin treatment and exclusively give rise to ECR colonies. Additionally, we developed a flow cytometry-based tool that takes advantage of a SYTOX-based assay for the stratification of ECP levels. Once challenged with various collections of echinocandin-susceptible blood isolates, our assay reliably differentiated ECP levels in vitro and predicted ECP levels in real time under ex vivo and in vivo conditions when compared to traditional methods relying on colony-forming unit counting. Given the high and low ECP predictive values of 92.3% and 82.3%, respectively, our assay showed a high agreement with traditional approach. Collectively, our study supports the concept of ECP level determination in clinical settings and provides a robust tool scalable for high-throughput settings. Application of this tool facilitates the interrogation of mutant and drug libraries to further our understanding of persister biology and designing anti-persister therapeutics. IMPORTANCE: Candida glabrata is a prevalent fungal pathogen able to replicate inside macrophages and rapidly develop resistance against frontline antifungal echinocandins. Multiple studies have shown that echinocandin resistance is fueled by the survival of a small subpopulation of susceptible cells surviving lethal concentrations of echinocandins. Importantly, bacterial pathogens that exhibit high antibiotic persistence also impose a high burden and generate more antibiotic-resistant colonies. Nonetheless, the implications of echinocandin persistence (ECP) among the clinical isolates of C. glabrata have not been defined. Additionally, ECP level determination relies on a laborious and time-consuming method, which is prone to high variation. By exploiting in vivo systemic infection and ex vivo models, we showed that C. glabrata isolates with a higher ECP are associated with a higher burden and more likely develop echinocandin resistance upon micafungin treatment. Additionally, we developed an assay that reliably determines ECP levels in real time. Therefore, our study identified C. glabrata isolates displaying high ECP levels as important entities and provided a reliable and convenient tool for measuring echinocandin persistence, which is extendable to other fungal and bacterial pathogens.


Assuntos
Candida glabrata , Equinocandinas , Equinocandinas/farmacologia , Candida glabrata/genética , Micafungina/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA