Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virol Sin ; 38(4): 559-567, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290559

RESUMO

Cap-dependent endonuclease (CEN) in the polymerase acidic protein (PA) of influenza A virus (IAV) represents a promising drug target due to its critical role in viral gene transcription. The CEN inhibitor, baloxavir marboxil (BXM), was approved in Japan and the US in 2018 and several other countries subsequently. Along with the clinical use of BXM, the emergence and spread of IAV variants with reduced susceptibility to BXM have aroused serious concern. Herein, we comprehensively characterized the in vitro and in vivo antiviral activities of ZX-7101A, an analogue of BXM. The active form of prodrug ZX-7101 showed broad-spectrum antiviral potency against various IAV subtypes, including pH1N1, H3N2, H7N9 and H9N2, in MDCK cells, and the 50% effective concentration (EC50) was calculated to nanomole level and comparable to that of baloxavir acid (BXA), the active form of BXM. Furthermore, in vivo assays showed that administration of ZX-7101A conferred significant protection against lethal pH1N1 challenge in mice, with reduced viral RNA loads and alleviated pulmonary damage. Importantly, serial passaging of H1N1 virus in MDCK cells under selection pressure of ZX-7101 led to a resistant variant at the 15th passage. Reverse genetic and sequencing analysis demonstrated that a single E18G substitution in the PA subunit contributed to the reduced susceptibility to both ZX-7101 and BXA. Taken together, our results not only characterized a new CEN inhibitor of IAV but also identified a novel amino acid substitution responsible for CEN inhibitor resistance, which provides critical clues for future drug development and drug resistance surveillance.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Tiepinas , Animais , Camundongos , Humanos , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Endonucleases/genética , Endonucleases/química , Endonucleases/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2 , Tiepinas/farmacologia , Tiepinas/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Farmacorresistência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA