Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337908

RESUMO

The strawberry (Fragaria × ananassa Duch.) "Sulhyang" is a typical seasonal flowering (SF) strawberry that produces flower buds in day lengths shorter than a critical limit (variable, but often defined as <12 h). There is a trade-off between photoperiod-controlled flowering and gibberellin (GA) signaling pathway-mediated runnering. Some related genes (such as CO, FT1, SOC1, and TFL1) participating in light signaling and circadian rhythm in plants are altered under blue light (BL). Sugars for flowering and runnering are mainly produced by photosynthetic carbon assimilation. The intensity of light could affect photosynthesis, thereby regulating flowering and runnering. Here, we investigated the effect of the intensity of supplemental blue light (S-BL) or night-interrupting blue light (NI-BL) in photoperiodic flowering and runnering regulation by applying 4 h of S-BL or NI-BL with either 0, 10, 20, 30, or 40 µmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10 h short-day (SD10) (SD10 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)) or 14 h long-day (LD14) conditions (LD14 + S-BL4 or + NI-BL4 (0, 10, 20, 30, or 40)). Approximately 45 days after the photoperiodic light treatment, generally, whether S-BL or NI-BL, BL (20) was the most promotive in runnering, leading to more runners in both the LD and SD conditions. For flowering, except the treatment LD14 + S-BL, BL (20) was still the key light, either from BL (20) or BL (40), promoting flowering, especially when BL acted as the night-interrupting light, regardless of the photoperiod. At the harvest stage, larger numbers of inflorescences and runners were observed in the LD14 + NI-BL4 treatment, and the most were observed in the LD14 + NI-BL (20). Moreover, the SD10 + NI-BL4 was slightly inferior to the LD14 + NI-BL4 in increasing the numbers of inflorescences and runners, but it caused earlier flowering. Additionally, the circadian rhythm expression of flowering-related genes was affected differently by the S-BL and NI-BL. After the application of BL in LD conditions, the expression of an LD-specific floral activator FaFT1 was stimulated, while that of a flowering suppressor FaTFL1 was inhibited, resetting the balance of expression between these two opposite flowering regulators. The SD runnering was caused by BL in non-runnering SD conditions associated with the stimulation of two key genes that regulate runner formation in the GA pathway, FaGRAS32 and FaGA20ox4. In addition, the positive effects of BL on enhancing photosynthesis and carbohydrate production also provided an abundant energy supply for the flowering and runnering processes.

2.
Bioresour Technol ; 384: 129313, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37302765

RESUMO

This study aimed to investigate the physiological and biochemical responses of filamentous microalga Tribonema minus to different Na2SeO3 concentrations and its selenium absorption and metabolism to evaluate the potential in treating selenium-containing wastewater. The results showed that low Na2SeO3 concentrations promoted growth by increasing chlorophyll content and antioxidant capacity, whereas high concentrations caused oxidative damage. Although Na2SeO3 exposure reduced lipid accumulation compared with the control, it significantly increased carbohydrate, soluble sugar, and protein contents, with the highest carbohydrate productivity of 117.97 mg/L/d at 0.5 mg/L Na2SeO3. Furthermore, this alga effectively absorbed Na2SeO3 in the growth medium and converted most of it into volatile selenium and a small part into organic selenium (predominantly as selenocysteine), showing strong selenite removal efficacy. This is the first report on the potential of T. minus to produce valuable biomass while removing selenite, providing new insights into the economic feasibility of bioremediation of selenium-containing wastewater.


Assuntos
Microalgas , Selênio , Estramenópilas , Selenito de Sódio , Selênio/metabolismo , Selênio/farmacologia , Microalgas/metabolismo , Águas Residuárias , Biotransformação , Açúcares , Estramenópilas/metabolismo
3.
BMC Plant Biol ; 23(1): 97, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36792994

RESUMO

Low phosphorus (P) is one of the limiting factors in sustainable cotton production. However, little is known about the performance of contrasting low P tolerant cotton genotypes that might be a possible option to grow in low P condition. In the current study, we characterized the response of two cotton genotypes, Jimian169 a strong low P tolerant, and DES926 a weak low P tolerant genotypes under low and normal P conditions. The results showed that low P greatly inhibited growth, dry matter production, photosynthesis, and enzymatic activities related to antioxidant system and carbohydrate metabolism and the inhibition was more in DES926 as compared to Jimian169. In contrast, low P improved root morphology, carbohydrate accumulation, and P metabolism, especially in Jimian169, whereas the opposite responses were observed for DES926. The strong low P tolerance in Jimian169 is linked with a better root system and enhanced P and carbohydrate metabolism, suggesting that Jimian169 is a model genotype for cotton breeding. Results thus indicate that the Jimian169, compared with DES926, tolerates low P by enhancing carbohydrate metabolism and by inducing the activity of several enzymes related to P metabolism. This apparently causes rapid P turnover and enables the Jimian169 to use P more efficiently. Moreover, the transcript level of the key genes could provide useful information to study the molecular mechanism of low P tolerance in cotton.


Assuntos
Fósforo , Melhoramento Vegetal , Fósforo/metabolismo , Metabolismo dos Carboidratos , Fotossíntese , Genótipo
4.
Plant Biol (Stuttg) ; 25(1): 54-61, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36164964

RESUMO

Glycerophosphodiester phosphodiesterase (GDPD; EC 3.1.4.46) is involved in plant phosphate (Pi) utilization and its expression is upregulated under phosphorus (P)-deficient conditions. Although rice was grown under P-sufficient conditions, the transcript levels of specific OsGDPD were upregulated in mature rice leaf blades (LB) in elevated CO2 (eCO2 ) environments. Expression and subcellular localization of GDPD, and contents of Pi, sugar phosphates and carbohydrates were analysed to clarify the physiological function of GDPD in rice under eCO2 . Under eCO2 , expression of specific OsGDPD increased only in mature rice LB in which low Pi concentrations were observed. Moreover, eCO2 -induced OsGDPD2 and OsGDPD3 were localized in the plastid, indicating that GDPD2 and GDPD3 may be related to plastidic functions, such as carbon assimilation. Although rice LB contained more carbohydrates under eCO2 than under ambient CO2 , the phosphoglucose content decreased under eCO2 , suggesting that the need for excess phosphoglucose to synthesize carbohydrates under eCO2 causes a local Pi deficiency. Furthermore, we confirmed that glycerol-3-phosphate produced by the catalysis of GDPD from glycerophosphodiester contributes to carbohydrate accumulation in rice LB. Our findings suggest that local Pi deficiency due to excess carbohydrate accumulation under eCO2 influences GDPD to enhance glycerophosphodiester hydrolysis.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Fosfatos/metabolismo , Carboidratos
5.
Front Plant Sci ; 13: 981143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186037

RESUMO

The photoreceptor-mediated photoperiodic sensitivity determines the obligate short-day flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) when the night length is longer than a critical minimum, otherwise, flowering is effectively inhibited. The reversal of this inhibition by subsequent exposure to a short period of supplemental (S) or night-interruptional (NI) blue (B) light (S-B; NI-B) indicates the involvement of B light-received photoreceptors in the flowering response. Flowering is mainly powered by sugars produced through photosynthetic carbon assimilation. Thus, the light intensity can be involved in flowering regulation by affecting photosynthesis. Here, it is elucidated that the intensity of S-B or NI-B in photoperiodic flowering regulation of chrysanthemums by applying 4-h of S-B or NI-B with either 0, 10, 20, 30, or 40 µmol·m-2·s-1 photosynthetic photon flux density (PPFD) in a 10-h short-day (SD10) [SD10 + 4B or + NI-4B (0, 10, 20, 30, or 40)] or 13-h long-day (LD13) condition [LD13 + 4B or + NI-4B (0, 10, 20, 30, or 40)] provided by 300 ± 5 µmol·m-2·s-1 PPFD white (W) LEDs. After 60 days of photoperiodic light treatments other than the LD13 and LD13 + NI-4B (40), flowering with varying degrees was observed, although the SD10 gave the earliest flowering. And the LD13 + 4B (30) produced the greatest number of flowers. The flowering pattern in response to the intensity of S-B or NI-B was consistent as it was gradually promoted from 10 to 30 µmol m-2 s-1 PPFD and inhibited by 40B regardless of the photoperiod. In SD conditions, the same intensity of S-B and NI-B did not significantly affect flowering, while differential flowering inhibition was observed with any intensity of NI-B in LDs. Furthermore, the 30 µmol·m-2·s-1 PPFD of S-B or NI-B up-regulated the expression of floral meristem identity or florigen genes, as well as the chlorophyll content, photosynthetic efficiency, and carbohydrate accumulation. The 40B also promoted these physiological traits but led to the unbalanced expression of florigen or anti-florigen genes. Overall, the photoperiodic flowering in response to the intensity of S-B or NI-B of the SDP chrysanthemum suggests the co-regulation of photosynthetic carbon assimilation and differential photoreceptor-mediated control.

6.
Bioresour Technol ; 352: 127086, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35364235

RESUMO

The potential of microalgae to remove nutrients from swine wastewater and accumulate carbohydrates was examined. Chlorella sorokiniana AK-1 and Chlorella vulgaris ESP-31 were grown in 10% unsterilized swine wastewater and obtained a maximum carbohydrate content and productivity of 42.5% and 189 mg L-1d-1, respectively. At 25% wastewater and 25% BG-11 concentration, the maximum carbohydrate productivity and total nitrogen removal efficiency of C. vulgaris ESP-31 were improved to 266 mg L-1d-1 and 54.2%, respectively. Further modifications in light intensity, inoculum size, and harvesting period enhanced the biomass growth, carbohydrate concentration, and total nitrogen assimilation to 3.6 gL-1, 1.8 gL-1, and 92.2%, respectively. Ethanol fermentation of the biomass resulted in bioethanol yield and concentration of 84.2% and 4.2 gL-1, respectively. Overall, unsterilized swine wastewater was demonstrated as a cost-effective nutrient source for microalgal cultivation which further increases the economic feasibility and environmental compatibility of bioethanol production with concomitant swine wastewater treatment.


Assuntos
Chlorella vulgaris , Microalgas , Animais , Biomassa , Carboidratos , Nitrogênio , Suínos , Águas Residuárias
7.
Planta ; 253(1): 21, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399991

RESUMO

MAIN CONCLUSION: Starch and sucrose metabolism and plant-pathogen interaction pathways play a dominate role in recessive genic male sterility (RGMS) of cabbage (Brassica oleracea L. var. capitata). RGMS is common in plants and has been widely applied as an effective and economic system for hybrid seed production in many crops. However, little is known regarding the molecular mechanisms of RGMS in cabbage. Hence, full-length transcriptomic and physiological analysis were performed in the spontaneous RGMS mutant RMS3185A and its near-isogenic fertile line (NIL) RMS3185B of small (< 1.6 mm in diameter), medium (~ 2.5 mm in diameter), and large floral buds (~ 3.4 mm in diameter) to identify the differentially expressed genes (DEGs) associated with RMGS. The pollen abnormalities between RMS3185B and RMS3185A appeared at the large floral bud stage. In contrast with RMS3185B, the mature anthers and stamens of RMS3185A were shorter than those of RMS3185B, and the anthers did not dehiscent. The concentrations of glucose, fructose, trehalose, starch, and cellulose in RMS3185A were all significantly lower than those in large floral buds of RMS3185B. PacBio sequencing results showed that DEGs were mainly concentrated in large floral bud stage. In combination with the KEGG enrichment analysis of DEGs in GO terms related to cell wall, pollen and anther, pentose and glucuronate interconversions (ko00040), starch and sucrose metabolism (ko00500), and plant-pathogen interaction (ko04626) were significantly enriched. Among which, cell-wall/pectin-related genes of eighteen PEI, twenty-two PEL, three PG, and fifteen PGL involved in ko00040, and one UGDH, one SPS, four CWINV, four TPP/TPS, and four EGL involved in ko00500, as well as plant-pathogen interaction genes, including sixteen calcium-dependent protein kinase (CDPK), one cyclic nucleotide-gated ion channel (CNGC), and twenty-three calcium-binding protein CML (CML), were significantly down-regulated in RMS3185A relative to that in RMS3185B. Besides, genes involved in ko04626, including two CML and one transcription factor WRKY33, were up-regulated in RMS3185A relative to that in RMS3185B. In conclusion, we hypothesized that the expression alterations of these genes were responsible for calcium signaling and sugar metabolism, thus affecting the occurrence of RGMS in cabbage.


Assuntos
Brassica , Flores , Infertilidade das Plantas , Proteínas de Plantas , Transcriptoma , Brassica/genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética
8.
Plants (Basel) ; 9(11)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113921

RESUMO

Winter wheat (Triticum aestivum L.) undergoes a period of cold acclimation in order to survive the ensuing winter, which can bring freezing temperatures and snow mold infection. Tolerance of these stresses is conferred in part by accumulation of carbohydrates in the crown region. This study investigates the contributions of carbohydrate accumulation during a cold treatment among wheat lines that differ in their snow mold tolerance (SMT) or susceptibility (SMS) and freezing tolerance (FrT) or susceptibility (FrS). Two parent varieties and eight recombinant inbred lines (RILs) were analyzed. The selected RILs represent four combinations of tolerance: SMT/FrT, SMT/FrS, SMS/FrT, and SMS/FrS. It is hypothesized that carbohydrate accumulation and transcript expression will differ between sets of RILs. Liquid chromatography with a refractive index detector was used to quantify carbohydrate content at eight time points over the cold treatment period. Polysaccharide and sucrose content differed between SMT and SMS RILs at various time points, although there were no significant differences in glucose or fructose content. Glucose and fructose content differed between FrT and FrS RILs in this study, but no significant differences in polysaccharide or sucrose content. RNAseq was used to investigate differential transcript expression, followed by modular enrichment analysis, to reveal potential candidates for other mechanisms of tolerance, which included expected pathways such as oxidative stress, chitinase activity, and unexpected transcriptional pathways. These differences in carbohydrate accumulation and differential transcript expression begin to give insight into the differences of wheat lines when exposed to cold temperatures.

9.
Harmful Algae ; 93: 101796, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32307076

RESUMO

Nitrogen availability is one of the key factors affecting the dynamics of non-diazotrophic cyanobacterial blooms in eutrophic lakes. While previous studies mainly focused on the promoting effect of nitrogen on the growth of cyanobacteria, this study aimed to investigate the role of nitrogen availability in the downward transport of biomass and its effects on the dynamics of Microcystis blooms. We performed field enclosure experiments which demonstrated that nitrogen availability negatively affects the downward transport of biomass. With a nitrogen loading of 0.02 g N m-2 d-1, the Microcystis biomass in the water column decreased by 56.2% over a 4-day period. During the same period of time, the average sinking ratio was 0.23 d-1; moreover, the termination of biomass growth was detected. At the notably higher nitrogen loading of 0.5 g N m-2d-1, the downward transport of biomass could still compensate for the biomass growth, although the average sinking ratio was lower at 0.16 d-1. Additional laboratory culture experiments demonstrated that the increase in the downward transport of Microcystis occurred in parallel to an increase in the carbohydrate content and a decrease in gas vesicle content. Further proteomic analysis indicated that the carbohydrate accumulation induced by nitrogen deficiency was a result of the slowing down of catabolic consumption, especially the downregulation of glycolysis. Thus, our study suggests that increased intracellular carbohydrate accumulation at low nitrogen availability causes a higher sinking ratio of Microcystis, indicating that nitrogen limits the duration of Microcystis blooms; thus, decreased nitrogen availability may lead to increased sinking of biomass out of the water column, accelerating the dissipation of Microcystis blooms.


Assuntos
Cianobactérias , Microcystis , Biomassa , Nitrogênio , Proteômica
10.
Mol Plant ; 12(9): 1278-1293, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31102785

RESUMO

To sustain plant growth, development, and crop yield, sucrose must be transported from leaves to distant parts of the plant, such as seeds and roots. To identify genes that regulate sucrose accumulation and transport in maize (Zea mays), we isolated carbohydrate partitioning defective33 (cpd33), a recessive mutant that accumulated excess starch and soluble sugars in mature leaves. The cpd33 mutants also exhibited chlorosis in the leaf blades, greatly diminished plant growth, and reduced fertility. Cpd33 encodes a protein containing multiple C2 domains and transmembrane regions. Subcellular localization experiments showed the CPD33 protein localized to plasmodesmata (PD), the plasma membrane, and the endoplasmic reticulum. We also found that a loss-of-function mutant of the CPD33 homolog in Arabidopsis, QUIRKY, had a similar carbohydrate hyperaccumulation phenotype. Radioactively labeled sucrose transport assays showed that sucrose export was significantly lower in cpd33 mutant leaves relative to wild-type leaves. However, PD transport in the adaxial-abaxial direction was unaffected in cpd33 mutant leaves. Intriguingly, transmission electron microscopy revealed fewer PD at the companion cell-sieve element interface in mutant phloem tissue, providing a possible explanation for the reduced sucrose export in mutant leaves. Collectively, our results suggest that CPD33 functions to promote symplastic transport into sieve elements.


Assuntos
Folhas de Planta/metabolismo , Sacarose/metabolismo , Zea mays/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Floema/metabolismo , Plasmodesmos/metabolismo
11.
Chemosphere ; 221: 665-671, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30677727

RESUMO

Nitrogen limitation has been proven to inhibit Microcystis proliferation, and the significant decline in Microcystis blooms in late summer or autumn has been considered to be related to the nitrogen depletion in water. Sinking loss is another factor that influences the dynamics of cyanobacteria in lakes. However, to date, it is still unclear how the sinking property of Microcystis responds to nitrogen availability. Our results suggest that nitrogen limitation would directly influence sinking property of Microcystis, through a significant increase in the specific density of cells. In the short term, carbohydrate accumulation was mainly responsible for the high specific density, showing a high correlation among the NO3--N concentration, specific density and carbohydrate content. Furthermore, carbohydrates could rapidly accumulate after one light/dark cycle, which was mainly due to the reduction in carbohydrate consumption in the darkness under nitrogen limitation. Under nitrogen-light coupling conditions, the specific density ranged from 1.060 to 1.068, except for the treatment with high-nitrogen plus low-light, which showed the value of 1.032. More importantly, when coupled with low nitrogen, the low light did not decrease the carbohydrate content and the specific density, which implied that the sinking cells could not migrate back to the surface. Accordingly, a hypothesis was proposed that the carbohydrate accumulation induced by low nitrogen availability caused an increase in specific density, which invalidates the buoyancy regulation, and cells sink continually out of the water column. This study explores a new understanding on the disappearance mechanisms of Microcystis blooms in the late summer and fall.


Assuntos
Metabolismo dos Carboidratos , Microcystis/fisiologia , Nitrogênio/análise , Estações do Ano , Cianobactérias/fisiologia , Lagos/microbiologia , Gravidade Específica
12.
Appl Biochem Biotechnol ; 185(2): 419-433, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29178054

RESUMO

Accumulated carbohydrate in microalgae is promising feedstock for bioethanol fermentation. Selection of suitable cultivation conditions in semi-continuous cultivation is critical to achieve a high carbohydrate productivity. In the current study, the effects of macro-nutrient (nitrogen, phosphorus, and sulfur) limitations and light intensity were evaluated for the carbohydrate accumulations of Chlorella sp. AE10 under 10% CO2 conditions. It was shown that nitrogen limitation and high light intensity were effective for improving carbohydrate productivity. The average carbohydrate and biomass productivity in semi-continuous cultivation with 1/4 N medium and 1000 µmol photons m-2 s-1 was 0.673 and 0.93 g L-1 day-1, respectively. Sulfur and phosphorus limitations could improve the carbohydrate content but they could not enhance the carbohydrate productivity. The cell cycle progression and chlorophyll a were investigated using flow cytometry (FCM). The results showed that macro-nutrient limitation and high light intensity indeed influenced cell cycle progression and led to the formation of polyploid cells along with the carbohydrate accumulation in a certain range. FCM was rapid and accurate method to investigate the operation conditions why 1/4 N, 2 days as a cycle, and high light intensity were optimal ones. In addition, the remaining high level of photosynthesis activity was also important for achieving a high carbohydrate productivity. Dynamic tracking of carbohydrate accumulation is helpful for establishment of a semi-continuous cultivation for enhancing carbohydrate productivity in microalgae.


Assuntos
Biomassa , Metabolismo dos Carboidratos , Ciclo Celular , Chlorella/crescimento & desenvolvimento , Clorofila/metabolismo , Citometria de Fluxo/métodos
13.
Plant Physiol Biochem ; 113: 110-121, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28196349

RESUMO

The interaction between low sink demand and potassium (K) deficiency in leaf photosynthesis was not intensively investigated, therefore this interaction was investigated in winter oilseed rape (Brassica napus L.). Plants subjected to sufficient (+K) or insufficient (-K) K supply treatments were maintained or removed their flowers and pods; these conditions were defined as high sink demand (HS) or low sink demand (LS), respectively. The low sink demand induced a lower photosynthetic rate (Pn), especially in the -K treatment during the first week. A negative relationship between Pn and carbohydrate concentration was observed in the -K treatment but not in the +K treatment, suggesting that the decrease in Pn in the -K treatment was the result of sink feedback regulation under low sink demand. Longer sink removal duration increased carbohydrate concentration, but the enhanced assimilate did not influence Pn. On the contrary, low sink demand resulted in a high K concentration, slower chloroplast degradation rate and better PSII activity, inducing a higher Pn compared with HS. Consequently, low sink demand decreased leaf photosynthesis over the short term due to sink feedback regulation, and potassium deficiency enhanced the photosynthetic decrease through carbohydrate accumulation and a lower carbohydrate concentration threshold for initiating photosynthesis depression. A longer duration of limited sink demand and sufficient potassium supply resulted in a higher photosynthesis rate because of delayed chloroplast degradation. This finding indicates that the nutritional status plays a role in leaf photosynthesis variations due to sink-source manipulation.


Assuntos
Brassica napus/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Deficiência de Potássio/metabolismo , Brassica napus/anatomia & histologia , Brassica napus/citologia , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Retroalimentação Fisiológica , Flores/anatomia & histologia , Flores/citologia , Flores/metabolismo , Concentração de Íons de Hidrogênio , Folhas de Planta/anatomia & histologia , Folhas de Planta/citologia , Potássio/metabolismo
14.
Appl Biochem Biotechnol ; 181(2): 682-698, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27623816

RESUMO

Synechococcus PCC 7002 is an interesting species in view of industrial production of carbohydrates. The cultivation performances of this species are strongly affected by the pH of the medium, which also influences the carbohydrate accumulation. In this work, different methods of pH control were analyzed, in order to obtain a higher production of both Synechococcus biomass and carbohydrates. To better understand the influence of pH on growth and carbohydrate productivity, manual and automatic pH regulation in CO2 and bicarbonate system were applied. The pH value of 8.5 resulted the best to achieve both of these goals. From an industrial point of view, an alternative way to maintain the pH practically constant during the entire period of cultivation is the exploitation of the bicarbonate-CO2 buffer system, with the double aim to maintain the pH in the viability range and also to provide the amount of carbon required by growth. In this condition, a high concentration of biomass (6 g L-1) and carbohydrate content (around 60 %) were obtained, which are promising in view of a potential use for bioethanol production. The chemical equilibrium of C-N-P species was also evaluated by applying the ionic balance equations, and a relation between the sodium bicarbonate added in the medium and the equilibrium value of pH was discussed.


Assuntos
Reatores Biológicos/microbiologia , Metabolismo dos Carboidratos/fisiologia , Carbono/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo , Synechococcus/fisiologia , Proliferação de Células/fisiologia , Concentração de Íons de Hidrogênio , Especificidade da Espécie , Synechococcus/classificação
15.
Bioresour Technol ; 221: 385-393, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27660989

RESUMO

In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate.


Assuntos
Biocombustíveis/microbiologia , Carboidratos/química , Chlorella vulgaris , Amônia/química , Biomassa , Microalgas , Nitrogênio/química , Fósforo/química
16.
J Agric Food Chem ; 64(1): 95-106, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26652930

RESUMO

The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations.


Assuntos
Amaranthus/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/farmacologia , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Amaranthus/enzimologia , Amaranthus/genética , Dosagem de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glicina/farmacologia , Resistência a Herbicidas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glifosato
17.
Biotechnol Biofuels ; 7(1): 164, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520751

RESUMO

BACKGROUND: Oleaginous microorganisms, such as bacterium, yeast and algal species, can represent an alternative oil source for biodiesel production. The composition of their accumulated lipid is similar to the lipid of an oleaginous plant with a predominance of unsaturated fatty acid. Moreover this alternative to conventional biodiesel production does not create competition for land use between food and oleo-chemical industry supplies. Despite this promising potential, development of microbial production processes are at an early stage. Nutritional limited conditions, such as nitrogen limitation, with an excess of carbon substrate is commonly used to induce lipid accumulation metabolism. Nitrogen limitation implies modification of the carbon-to-nitrogen ratio in culture medium, which impacts on carbon flow distribution in the metabolic network. RESULTS: The goal of the present study is to improve our knowledge of carbon flow distribution in oleaginous yeast metabolism by focusing carbon distribution between carbohydrate and lipid pools in order to optimize microbial lipid production. The dynamic effects of limiting nitrogen consumption flux according to carbon flow were studied to trigger lipid accumulation in the oleaginous yeast Rhodotorula glutinis. With a decrease of the specific nitrogen consumption rate from 0.052 Nmol.CmolX (-1).h(-1) to 0.003 Nmol.CmolX (-1).h(-1), a short and transitory intracellular carbohydrate accumulation occurred before the lipid accumulation phase. This phenomenon was studied in fed-batch culture under optimal operating conditions, with a mineral medium and using glucose as carbon source. Two different strategies of decreasing nitrogen flow on carbohydrate accumulation were investigated: an instantaneous decrease and a progressive decrease of nitrogen flow. CONCLUSIONS: Lipid production performance in these fed-batch culture strategies with R. glutinis were higher than those reported in the previous literature; the catalytic specific lipid production rate was 0.07 Cmollip.CmolX* (-1).h(-1). Experimental results suggested that carbohydrate accumulation was an intrinsic phenomenon connected to the limitation of growth by nitrogen when the nitrogen-to-carbon ratio in the feed flow was lower than 0.045 Nmol.Cmol(-1). Carbohydrate accumulation corresponded to a 440% increase of carbohydrate content. These results suggest that microbial lipid production can be optimized by culture strategy and that carbohydrate accumulation must be taken account for process design.

18.
Iran J Reprod Med ; 10(3): 181-92, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-25242992

RESUMO

BACKGROUND: In this study we aimed to evaluate the impact of chronic exposure to the Gly-phosate (GP) on rat's testicular tissue and sperm parameters. OBJECTIVE: Testicular tissue, morphology of sperms and testosterone level in serum of mature male rats were analyzed. MATERIALS AND METHODS: Animals were divided into two test and control-sham groups. The test group was subdivided into 4 groups (10, 20, 30 and 40 days GP administrated). Each test group (n=8) received the compound at dose of 125 mg/kg, once a day, orally for 40 days while control-sham group (n=16) received the corn oil (0.2 ml/day). RESULTS: Microscopic analyses revealed increased thickness of tunica albuginea, obvious edema in sub-capsular and interstitial connective tissue, atrophied seminiferous tubules, arrested spermatogenesis, negative tubular differentiation and repopulation indexes, decreased Leydig cells/mm(2) of interstitial tissue, hypertrophy and cytoplasmic granulation of Leydig cells, elevated death, immature sperm and increased immotile and abnormal sperm percentage. The carbohydrate ratio was reduced in first three layers of the germinal epithelium (GE) cytoplasm. The upper layers of the GE series were manifested with low rate of lipid accumulation in cytoplasm, while the cells which were located in first layers were revealed with higher amount of lipid foci. Hematological investigations showed significant (p<0.05) decreasing of testosterone level in serum. CONCLUSION: The current data provide inclusive histological feature of chronic exposure against GP with emphasizing on reproductive disorders including histological adverse effect on the testicular tissue, spermatogenesis, sperm viability and abnormality which potentially can cause infertility.

19.
Physiol Plant ; 102(1): 16-20, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35359133

RESUMO

Accumulation of assimilates in source leaves of magnesium-deficient plants is a well-known feature. We had wished to determine whether metabolite concentrations in sink leaves and roots are affected by magnesium nutrition. Eight-week-old spinach plants were supplied either with a complete nutrient solution (control plants) or with one lacking Mg (deficient plants) for 12 days. Shoot and root fresh weights and dry weights were lower in deficient than in control plants. Mg concentrations in deficient plants were 11% of controls in source leaves, 12% in sink leaves and 26% in roots, respectively. As compared with controls, increases were found in starch and amino acids in source leaves and in sucrose, hexoses, starch and amino acids in sink leaves, whereas they were only slightly enhanced in roots. In phloem sap of magnesium-deficient and control plants no differences in sucrose and amino acid concentrations were found. To prove that sink leaves were the importing organs they were shaded, which did not alter the response to magnesium deficiency as compared with that without shading. Since in the shaded sink leaves the photosynthetic production of metabolites could be excluded, those carbohydrates and amino acids that accumulated in the sink leaves of the deficient plants must have been imported from the source leaves. It is concluded that in magnesium-deficient spinach plants the growth of sink leaves and roots was not limited by carbohydrate or amino acid supply. It is proposed that the accumulation of assimilates in the source leaves of Mg-deficient plants results from a lack of utilization of assimilates in the sink leaves.

20.
Oecologia ; 102(2): 238-245, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-28306879

RESUMO

Nonstructural carbohydrate allocation patterns in response to different frequencies of simulated browsing (leaf and twig removal) were studied in the following semi-arid shrubs: Osteospermum sinuatum, a dwarf deciduous shrub, Pteronia pallens, a dwarf evergreen shrub, and Ruschia spinosa, a dwarf leaf-succulent shrub. Simulated browsing at all frequencies resulted in the elevation, or had no effect, on total nonstructural carbohydrate (TNC) concentrations of O. sinuatum plant parts, and resulted in the decrease in TNC concentrations of R. spinosa plant parts. The responses of P. pallens were intermediate with elevations as well as declines in TNC concentrations of plant parts measured in response to various clipping frequencies. At the low frequency of simulated browsing (every 26 weeks) elevations in plant TNC content were measured in the two non-succulent shrubs O. sinuatum and P. pallens. It was concluded that the overcompensation with respect to TNC accumulation observed in the two non-succulent species represents one of the ways in which excess photosynthate is utilized by browsed shrubs with a limited regiowth potential. Simulated browsing was the least detrimental with respect to biomass production to the non-succulent O. sinuatum and P. pallens, and most injurious to the leaf-succulent shrub, R. spinosa. The observed TNC allocation patterns could not adequately explain the variation among species in the production of new growth and it was concluded that some factor(s) other than the carbon resource was limiting regrowth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA