Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032084

RESUMO

The red algae Gracilariopsis lemaneiformis is extensively cultivated at high densities, leading to significant increases in regional seawater pH due to its photosynthetic removal of inorganic carbon. We conducted a study on G. lemaneiformis cultured under various pH conditions (normal pH, pH 9.3, and pH 9.6) and light levels (dark and 100 µmol photons m-2 s-1) to investigate how high pH seawater environments affect the metabolic processes of G. lemaneiformis. The high pH did not directly damage the photosynthetic light reactions or the Calvin cycle. Instead, the observed reduction in photosynthetic rates was primarily due to CO2 limitation. However, under illuminated conditions, a high pH environment leads to a decrease in electron transport efficiency (ETo/RC) and reaction center density (RC/CSo), while simultaneously increasing the levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), and the activity of antioxidant enzymes. Under illuminated conditions, the limitation of inhibit the photosynthetic electron transport process, leading to energy imbalance and excessive production of reactive oxygen species, which in turn resulted in lipid peroxidation of the cell membrane. This might be one of the inducing factors responsible for the bleaching in sea-farmed G. lemaneiformis plants.

2.
ISME Commun ; 4(1): ycae081, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38988701

RESUMO

Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.

3.
FEMS Microbiol Ecol ; 100(7)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886127

RESUMO

Aerobic anoxygenic phototrophic (AAP) bacteria are an important component of freshwater bacterioplankton. They can support their heterotrophic metabolism with energy from light, enhancing their growth efficiency. Based on results from cultures, it was hypothesized that photoheterotrophy provides an advantage under carbon limitation and facilitates access to recalcitrant or low-energy carbon sources. However, verification of these hypotheses for natural AAP communities has been lacking. Here, we conducted whole community manipulation experiments and compared the growth of AAP bacteria under carbon limited and with recalcitrant or low-energy carbon sources under dark and light (near-infrared light, λ > 800 nm) conditions to elucidate how they profit from photoheterotrophy. We found that AAP bacteria induce photoheterotrophic metabolism under carbon limitation, but they overcompete heterotrophic bacteria when carbon is available. This effect seems to be driven by physiological responses rather than changes at the community level. Interestingly, recalcitrant (lignin) or low-energy (acetate) carbon sources inhibited the growth of AAP bacteria, especially in light. This unexpected observation may have ecosystem-level consequences as lake browning continues. In general, our findings contribute to the understanding of the dynamics of AAP bacteria in pelagic environments.


Assuntos
Carbono , Processos Fototróficos , Carbono/metabolismo , Processos Heterotróficos , Lagos/microbiologia , Bactérias Aeróbias/metabolismo , Bactérias Aeróbias/crescimento & desenvolvimento , Luz , Ecossistema , Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/genética
4.
Proc Natl Acad Sci U S A ; 121(16): e2318160121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598339

RESUMO

Organic carbon availability in soil is crucial for shaping microbial communities, yet, uncertainties persist concerning microbial adaptations to carbon levels and the ensuing ecological and evolutionary consequences. We investigated organic carbon metabolism, antibiotic resistance, and virus-host interactions in soils subjected to 40 y of chemical and organic fertilization that led to contrasting carbon availability: carbon-poor and carbon-rich soils, respectively. Carbon-poor soils drove the enrichment of putative genes involved in organic matter decomposition and exhibited specialization in utilizing complex organic compounds, reflecting scramble competition. This specialization confers a competitive advantage of microbial communities in carbon-poor soils but reduces their buffering capacity in terms of organic carbon metabolisms, making them more vulnerable to environmental fluctuations. Additionally, in carbon-poor soils, viral auxiliary metabolic genes linked to organic carbon metabolism increased host competitiveness and environmental adaptability through a strategy akin to "piggyback the winner." Furthermore, putative antibiotic resistance genes, particularly in low-abundance drug categories, were enriched in carbon-poor soils as an evolutionary consequence of chemical warfare (i.e., interference competition). This raises concerns about the potential dissemination of antibiotic resistance from conventional agriculture that relies on chemical-only fertilization. Consequently, carbon starvation resulting from long-term chemical-only fertilization increases microbial adaptations to competition, underscoring the importance of implementing sustainable agricultural practices to mitigate the emergence and spread of antimicrobial resistance and to increase soil carbon storage.


Assuntos
Carbono , Solo , Solo/química , Carbono/metabolismo , Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Microbiologia do Solo
5.
J Fungi (Basel) ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38535229

RESUMO

Pathogens have to cope with oxidative, iron- and carbon(glucose)-limitation stresses in the human body. To understand how combined iron-carbon limitation alters oxidative stress responses, Aspergillus fumigatus was cultured in glucose-peptone or peptone containing media supplemented or not with deferiprone as an iron chelator. Changes in the transcriptome in these cultures were recorded after H2O2 treatment. Responses to oxidative stress were highly dependent on the availability of glucose and iron. Out of the 16 stress responsive antioxidative enzyme genes, only the cat2 catalase-peroxidase gene was upregulated in more than two culturing conditions. The transcriptional responses observed in iron metabolism also varied substantially in these cultures. Only extracellular siderophore production appeared important regardless of culturing conditions in oxidative stress protection, while the enhanced synthesis of Fe-S cluster proteins seemed to be crucial for oxidative stress treated iron-limited and fast growing (glucose rich) cultures. Although pathogens and host cells live together in the same place, their culturing conditions (e.g., iron availability or occurrence of oxidative stress) can be different. Therefore, inhibition of a universally important biochemical process, like Fe-S cluster assembly, may selectively inhibit the pathogen growth in vivo and represent a potential target for antifungal therapy.

6.
Trends Plant Sci ; 28(12): 1347-1349, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37743166

RESUMO

Sucrose non-fermenting kinase 1 (SnRK1) has emerged as a pivotal activator of the autophagy pathway; however, the reciprocal influence of autophagy on SnRK1 remains unknown. Yang et al. have recently revealed the existence of a feedback loop connecting autophagy and SnRK1 in terrestrial plants, involving the novel FCS-like zinc finger (FLZ) class of proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Homeostase/genética , Plantas/genética , Plantas/metabolismo , Dedos de Zinco/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
7.
Front Plant Sci ; 14: 1142595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909442

RESUMO

Many carbon-related physiological questions in plants such as carbon (C) limitation or starvation have not yet been resolved thoroughly due to the lack of suitable experimental methodology. As a first step towards resolving these problems, we conducted infusion experiments with bonsai trees (Ficus microcarpa) and young maple trees (Acer pseudoplatanus) in greenhouse, and with adult Scots pine trees (Pinus sylvestris) in the field, that were "fed" with 13C-labelled glucose either through the phloem or the xylem. We then traced the 13C-signal in plant organic matter and respiration to test whether trees can take up and metabolize exogenous sugars infused. Ten weeks after infusion started, xylem but not phloem infusion significantly increased the δ13C values in both aboveground and belowground tissues of the bonsai trees in the greenhouse, whereas xylem infusion significantly increased xylem δ13C values and phloem infusion significantly increased phloem δ13C values of the adult pines in the field experiment, compared to the corresponding controls. The respiration measurement experiment with young maple trees showed significantly increased δ13C-values in shoot respired CO2 at the time of four weeks after xylem infusion started. Our results clearly indicate that trees do translocate and metabolize exogenous sugars infused, and because the phloem layer is too thin, and thus xylem infusion can be better operated than phloem infusion. This tree infusion method developed here opens up new avenues and has great potential to be used for research on the whole plant C balance and its regulation in response to environmental factors and extreme stress conditions.

8.
Ying Yong Sheng Tai Xue Bao ; 34(1): 203-212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36799395

RESUMO

Soil microorganisms play an important role in the biogeochemical cycles of terrestrial ecosystems. How-ever, it is still unclear how the amount and duration of nitrogen (N) addition affect soil microbial community structure and whether there is a correlation between the changes in microbial community structure and their nutrient limi-tation status. In this study, we conducted an N addition experiment in a subtropical Pinus taiwanensis forest to simulate N deposition with three treatments: control (CK, 0 kg N·hm-2·a-1), low N (LN, 40 kg N·hm-2·a-1), and high N (HN, 80 kg N·hm-2·a-1). Basic soil physicochemical properties, phospholipid fatty acids content, and carbon (C), N and phosphorus (P) acquisition enzyme activities were measured after one and three years of N addition. The relative nutrient limitation status of soil microorganisms was analyzed using ecological enzyme stoichiometry. The results showed that one-year N addition did not affect soil microbial community structure. Three-year LN treatment significantly increased the contents of Gram-positive bacteria (G+), Gram-negative bacteria (G-), actinomycetes (ACT), and total phospholipid fatty acids (TPLFA), whereas three-year HN treatment did not significantly affect soil microbial community, indicating that bacteria and ACT might be more sensitive to N addition. Nitrogen addition exacerbated soil C and P limitation. Phosphorus limitation was the optimal explanatory factor for the changes in soil microbial community structure. It suggested that P limitation induced by N addition might be more beneficial for the growth of certain oligotrophic bacteria (e.g. G+) and the microorganisms participating in the P cycling (e.g. ACT), with consequences on soil microbial community structure of subtropical Pinus taiwanensis forest.


Assuntos
Microbiota , Pinus , Fósforo , Nitrogênio/análise , Solo/química , Biomassa , Microbiologia do Solo , Florestas , Fosfolipídeos , Ácidos Graxos , Bactérias , Carbono , China
9.
Tree Physiol ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36708035

RESUMO

Nonstructural carbohydrates (NSCs) buffer differences in plant carbon supply (photosynthesis) and demand (respiration, growth, etc.) but the regulation of their dynamics remains unresolved. Seasonal variations in NSCs are well-documented, but differences in the time-average, amplitude, phase, and other characteristics across ecosystems and functional types lack explanation; furthermore, observed dynamics do not always match expectations. The failure to match observed and expected dynamics has stimulated debate on whether carbon supply or demand drives NSC dynamics. To gain insight into how carbon supply and demand drive seasonal NSC dynamics, we derive a simple model of NSC dynamics based on carbon mass balance and linearizing the NSC demand to determine how supply-driven and demand-driven seasonal NSC dynamics differ. We find that supply-driven and demand-driven dynamics yield distinct timings of seasonal extrema, and supply overrides demand when carbon supply is low in winter (e.g., at high latitudes). Our results also suggest that NSC dynamics often lag changes carbon mass balance. We also predict differences in NSC dynamics across mass, suggesting saplings are more dynamics and respond faster to the environment than mature trees. Our findings suggest substrate-dependent regulation with environmental variation is sufficient to generate complex NSC dynamics.

10.
Mar Ecol Prog Ser ; 689: 1-17, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35938055

RESUMO

Altered primary productivity associated with eutrophication impacts not only ecosystem structure but also the biogeochemical cycling of oxygen and carbon. We conducted laboratory experiments to empirically determine how residence time (1, 3, 10 d) influences eutrophication responses in a simplified Pacific Northwest Zostera marina-green macroalgal community. We expected long-residence time (RT) systems to exhibit eutrophication impairments. Instead, we observed an accumulation of nutrients at all RTs and a shift in the dissolved inorganic carbon speciation away from CO2 (aq) with unexpected consequences for eel grass plant condition, including shoot mortality. Most metrics responded more strongly to temperature treatments than to RT treatments. No dramatic shifts in the relative abundance of Z. marina and green macro algae were detected. Z. marina shoot density proliferated in cool temperatures (12°C) with a modest decline at 20°C. Eelgrass loss was associated with high total scale pH (pHT) and CO2 (aq) concentrations of <10 µmol kg-1 CO2 (aq), but not with high nutrients. Z. marina δ13C values support the hypo thesis that carbon availability was greater at short RT. Further, very low leaf sugar concentrations are consistent with extreme photosynthetic CO2 (aq) limitation. We suggest that the effects of extremely low environ mental car bon concentrations (CO2 (aq)) and increased respiration at warm temperatures (20°C) and other physiological processes can lead to internal carbon limitation and shoot mortality. Eutrophication responses to nutrient loading are more nuanced than just light limitation of eelgrass and require additional research on the interaction of the biogeochemical environment and plant physiology to better understand estuarine ecosystem disruption.

13.
J Fungi (Basel) ; 8(1)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35050018

RESUMO

Understanding the coordinated regulation of the hundreds of carbohydrate-active enzyme (CAZyme) genes occurring in the genomes of fungi has great practical importance. We recorded genome-wide transcriptional changes of Aspergillus nidulans cultivated on glucose, lactose, or arabinogalactan, as well as under carbon-starved conditions. We determined both carbon-stress-specific changes (weak or no carbon source vs. glucose) and carbon-source-specific changes (one type of culture vs. all other cultures). Many CAZyme genes showed carbon-stress-specific and/or carbon-source-specific upregulation on arabinogalactan (138 and 62 genes, respectively). Besides galactosidase and arabinan-degrading enzyme genes, enrichment of cellulolytic, pectinolytic, mannan, and xylan-degrading enzyme genes was observed. Fewer upregulated genes, 81 and 107 carbon stress specific, and 6 and 16 carbon source specific, were found on lactose and in carbon-starved cultures, respectively. They were enriched only in galactosidase and xylosidase genes on lactose and rhamnogalacturonanase genes in both cultures. Some CAZyme genes (29 genes) showed carbon-source-specific upregulation on glucose, and they were enriched in ß-1,4-glucanase genes. The behavioral ecological background of these characteristics was evaluated to comprehensively organize our knowledge on CAZyme production, which can lead to developing new strategies to produce enzymes for plant cell wall saccharification.

14.
New Phytol ; 232(4): 1839-1848, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34449884

RESUMO

The supply of carbon (C) from tree photosynthesis to ectomycorrhizal (ECM) fungi is known to decrease with increasing plant nitrogen (N) supply, but how this affects fungal nutrition and growth remains to be clarified. We placed mesh-bags with quartz sand, with or without an organic N (15 N-, 13 C-labeled) source, in the soil along a natural N supply gradient in boreal forest, to measure growth and use of N and C by ECM extramatrical mycelia. Mycelial C : N declined with increasing N supply. Addition of N increased mycelial growth at the low-N end of the gradient. We found an inverse relationship between uptake of added N and C; the use of added N was high when ambient N was low, whereas use of added C was high when C from photosynthesis was low. We propose that growth of ECM fungi is N-limited when soil N is scarce and tree belowground C allocation to ECM fungi is high, but is C-limited when N supply is high and tree belowground C allocation is low. This suggests that ECM fungi have a major role in soil N retention in nutrient-poor, but less so in nutrient-rich boreal forests.


Assuntos
Micorrizas , Carbono , Florestas , Micélio , Nitrogênio/análise , Solo , Microbiologia do Solo , Taiga , Árvores
15.
Fungal Biol ; 125(5): 368-377, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33910678

RESUMO

Intracellular metabolites were evaluated during the continuous growth of Trichoderma harzianum P49P11 under carbon-limited conditions. Four different conditions in duplicate were investigated (10 and 20 g/L of glucose, 5.26/5.26 g/L of fructose/glucose and 10 g/L of sucrose in the feed). Differences in the values of some specific concentrations of intracellular metabolites were observed at steady-state for the duplicates. The presence of extracellular polysaccharide was confirmed in the supernatant of all conditions based on FT-IR and proton NMR. Fragments of polysaccharides from the cell wall could be released due to the shear stress and since the cells can consume them under carbon-limited conditions, this could create an unpredictable carbon flow rate into the cells. According to the values of the metabolite concentrations, it was considered that the consumption of those fragments was interfering with the analysis.


Assuntos
Hypocreales , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Sacarose
16.
Front Microbiol ; 12: 617802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897635

RESUMO

Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3 --supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.

17.
Fungal Biol ; 125(3): 177-183, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33622533

RESUMO

Carbon-limited chemostat cultures were performed using different carbon sources (glucose, 10 and 20 g/L; sucrose, 10 g/L; fructose/glucose, 5.26/5.26 g/L; carboxymethyl cellulose, 10 g/L; and carboxymethyl cellulose/glucose, 5/5 g/L) to verify the capability of the wild type strain Trichoderma harzianum to produce extracellular enzymes. All chemostat cultures were carried out at a fixed dilution rate of 0.05 h-1. Experiments using glucose, fructose/glucose and sucrose were performed in duplicate. Glucose condition was found to induce the production of enzymes that can catalyse the hydrolysis of p-nitrophenyl-ß-d-glucopyranoside (PNPGase). A concentration of 20 g/L of glucose in the feed provided the highest productivity (1048 ± 16 U/mol h). Extracellular polysaccharides were considered the source of inducers. Based on the obtained results, a new PNPGase production process was developed using mainly glucose. This process raises interesting possibilities of synthesizing the inducer substrate and the induced enzymes in a single step using an easily assimilated carbon source under carbon-limited conditions.


Assuntos
Hypocreales , Carbono , Celulose/metabolismo , Fermentação , Glucose , Hidrólise
18.
Oecologia ; 195(2): 299-312, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33459865

RESUMO

It is unclear whether the frequently observed increase in non-structural carbohydrates (NSC) in plants exposed to low temperatures or drought reflects a higher sensitivity of growth than photosynthesis in such conditions (i.e. sink limitation), or a prioritization of carbon (C) allocation to storage. Alpine areas in Mediterranean-type climate regions are characterized by precipitation increases and temperature decreases with elevation. Thus, alpine plants with wide elevational ranges in Mediterranean regions may be good models to examine these alternative hypotheses. We evaluated storage and growth during experimental darkness and re-illumination in individuals of the alpine plant Phacelia secunda from three elevations in the Andes of central Chile. We hypothesized that storage is prioritized regarding growth in plants of both low- and high elevations where drought and cold stress are greatest, respectively. We expected that decreases in NSC concentrations during darkness should be minimal and, more importantly, increases in NSC after re-illumination should be higher than increases in biomass. We found that darkness caused a significant decrease in NSC concentrations of both low- and high-elevation plants, but the magnitude of the decrease was lower in the latter. Re-illumination caused higher increase in NSC concentration than in biomass in both low- and high-elevation plants (1.5- and 1.9-fold, respectively). Our study shows that C allocation in Phacelia secunda reflects ecotypic differences among elevation provenances and suggests that low temperature, but not drought, favours C allocation to storage over growth after severe C limitation.


Assuntos
Carbono , Clima , Chile , Secas , Humanos , Plantas
19.
Front Plant Sci ; 12: 758933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003157

RESUMO

As autotrophic organisms, plants capture light energy to convert carbon dioxide into ATP, nicotinamide adenine dinucleotide phosphate (NADPH), and sugars, which are essential for the biosynthesis of building blocks, storage, and growth. At night, metabolism and growth can be sustained by mobilizing carbon (C) reserves. In response to changing environmental conditions, such as light-dark cycles, the small-molecule regulation of enzymatic activities is critical for reprogramming cellular metabolism. We have recently demonstrated that proteogenic dipeptides, protein degradation products, act as metabolic switches at the interface of proteostasis and central metabolism in both plants and yeast. Dipeptides accumulate in response to the environmental changes and act via direct binding and regulation of critical enzymatic activities, enabling C flux distribution. Here, we provide evidence pointing to the involvement of dipeptides in the metabolic rewiring characteristics for the day-night cycle in plants. Specifically, we measured the abundance of 13 amino acids and 179 dipeptides over short- (SD) and long-day (LD) diel cycles, each with different light intensities. Of the measured dipeptides, 38 and eight were characterized by day-night oscillation in SD and LD, respectively, reaching maximum accumulation at the end of the day and then gradually falling in the night. Not only the number of dipeptides, but also the amplitude of the oscillation was higher in SD compared with LD conditions. Notably, rhythmic dipeptides were enriched in the glucogenic amino acids that can be converted into glucose. Considering the known role of Target of Rapamycin (TOR) signaling in regulating both autophagy and metabolism, we subsequently investigated whether diurnal fluctuations of dipeptides levels are dependent on the TOR Complex (TORC). The Raptor1b mutant (raptor1b), known for the substantial reduction of TOR kinase activity, was characterized by the augmented accumulation of dipeptides, which is especially pronounced under LD conditions. We were particularly intrigued by the group of 16 dipeptides, which, based on their oscillation under SD conditions and accumulation in raptor1b, can be associated with limited C availability or photoperiod. By mining existing protein-metabolite interaction data, we delineated putative protein interactors for a representative dipeptide Pro-Gln. The obtained list included enzymes of C and amino acid metabolism, which are also linked to the TORC-mediated metabolic network. Based on the obtained results, we speculate that the diurnal accumulation of dipeptides contributes to its metabolic adaptation in response to changes in C availability. We hypothesize that dipeptides would act as alternative respiratory substrates and by directly modulating the activity of the focal enzymes.

20.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32978139

RESUMO

Clostridium thermocellum and Thermoanaerobacterium saccharolyticum were grown in cellobiose-limited chemostat cultures at a fixed dilution rate. C. thermocellum produced acetate, ethanol, formate, and lactate. Surprisingly, and in contrast to batch cultures, in cellobiose-limited chemostat cultures of T. saccharolyticum, ethanol was the main fermentation product. Enzyme assays confirmed that in C. thermocellum, glycolysis proceeds via pyrophosphate (PPi)-dependent phosphofructokinase (PFK), pyruvate-phosphate dikinase (PPDK), as well as a malate shunt for the conversion of phosphoenolpyruvate (PEP) to pyruvate. Pyruvate kinase activity was not detectable. In T. saccharolyticum, ATP but not PPi served as cofactor for the PFK reaction. High activities of both pyruvate kinase and PPDK were present, whereas the activities of a malate shunt enzymes were low in T. saccharolyticum In C. thermocellum, glycolysis via PPi-PFK and PPDK obeys the equation glucose + 5 NDP + 3 PPi → 2 pyruvate + 5 NTP + Pi (where NDP is nucleoside diphosphate and NTP is nucleoside triphosphate). Metabolic flux analysis of chemostat data with the wild type and a deletion mutant of the proton-pumping pyrophosphatase showed that a PPi-generating mechanism must be present that operates according to ATP + Pi → ADP + PPi Both organisms also produced significant amounts of amino acids in cellobiose-limited cultures. It was anticipated that this phenomenon would be suppressed by growth under nitrogen limitation. Surprisingly, nitrogen-limited chemostat cultivation of wild-type C. thermocellum revealed a bottleneck in pyruvate oxidation, as large amounts of pyruvate and amino acids, mainly valine, were excreted; up to 50% of the nitrogen consumed was excreted again as amino acids.IMPORTANCE This study discusses the fate of pyrophosphate in the metabolism of two thermophilic anaerobes that lack a soluble irreversible pyrophosphatase as present in Escherichia coli but instead use a reversible membrane-bound proton-pumping enzyme. In such organisms, the charging of tRNA with amino acids may become more reversible. This may contribute to the observed excretion of amino acids during sugar fermentation by Clostridium thermocellum and Thermoanaerobacterium saccharolyticum Calculation of the energetic advantage of reversible pyrophosphate-dependent glycolysis, as occurs in Clostridium thermocellum, could not be properly evaluated, as currently available genome-scale models neglect the anabolic generation of pyrophosphate in, for example, polymerization of amino acids to protein. This anabolic pyrophosphate replaces ATP and thus saves energy. Its amount is, however, too small to cover the pyrophosphate requirement of sugar catabolism in glycolysis. Consequently, pyrophosphate for catabolism is generated according to ATP + Pi → ADP + PPi.


Assuntos
Clostridium thermocellum/metabolismo , Difosfatos/metabolismo , Nitrogênio/metabolismo , Thermoanaerobacterium/metabolismo , Reatores Biológicos , Análise do Fluxo Metabólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA