Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.749
Filtrar
1.
J Hazard Mater ; 478: 135445, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39116743

RESUMO

Graphitic carbon nitride (CN) as an adsorbent exhibit promising potential for the removal of uranium in water. However, the lack of active sites seriously restricts its practical application. In contrast to the traditional method of introducing new ligands, we propose a strategy to activate original ligands on CN by injecting π electrons, which can be realized by grafting 4-phenoxyphenol (PP) on CN (PCN). Compared with CN, the maximum adsorption capacity of PCN for uranium increased from 150.9 mg/g to 380.6 mg/g. Furthermore, PCN maintains good adsorption properties over a wide range of uranium concentrations (1 ∼ 60 mg/L) and pH (4 ∼ 8). After 5 consecutive cycles, PCN exhibited sustained uranium removal performance with a little of losses. The experimental and theoretical results show that the enhancement of adsorption performance is mainly due to the ligands activation of CN by delocalization of π electrons from PP. Furthermore, this activation can be enhanced by irradiation, as the CN can be photoexcited to provide additional photoelectrons for PP. As a result, dormant ligands such as N-CN, C-O-C, C-N-H and N-(C)3 can be activated to participate in coordination with uranium. This work provides theoretical guidance for the design and preparation of high efficiency uranium adsorbent.

2.
Small ; : e2405013, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109579

RESUMO

2D carbon nitride nanosheets, exemplified by g-C3N4, offers significant structural benefits and enhanced photocatalytic activity. Nonetheless, the quantum confinement effect prevalent in nanoscale photocatalysts would result in an enlarged bandgap, potentially restricting the spectral absorption range and impeding improvements in photocatalytic efficiency. Here, a high-performance 2D photocatalyst with an extended spectral response is achieved by incorporating a novel phenol-like structure into the conjugated framework of ultrathin g-C3N4 nanosheet. This novel strategy features targeted pyrimidine doping to create a conjugated carbon zone in heptazine structure, offering a thermodynamically favorable pathway for hydroxyl functionalization during the annealing exfoliation process. Consequently, the π-π* transition energy in the material is significantly decreased, and the active lone pair electrons in phenol-like structure induces a new n-π* transition with notably enhanced absorption from 500 to 650 nm. The optimized material shows a dramatic enhancement in photocatalytic activity, achieving ≈72 times than the activity of bulk g-C3N4, and demonstrating a measurable H2 production rate of 6.57 µmol g-1 h-1 under 650 nm light. This study represents a significant step forward in the strategic design of 2D photocatalysts, with tailored electronic structures that significantly boost light absorption and photocatalytic efficiency.

3.
Chemosphere ; 364: 143018, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111674

RESUMO

In this paper, we report hydroxyapatite derived from egg-shell biowaste embedded on diglycolamic acid functionalized graphitic carbon nitride nanocomposite (abbreviated as HAp@D-gCN). The compositional and morphological characteristics of HAp@D-gCN were evaluated using scanning electron microscope, X-ray diffraction, BET, FTIR techniques and surface charge using zeta potential measurement. The sorption of U(VI) species on HAp@D-gCN was investigated through batch studies as a function of pH, contact time, initial U(VI) concentration, adsorbent dosage and ionic strength. The adsorption of U(VI) onto HAp@D-gCN was confirmed by FTIR, XRD and EDS elemental mapping. Adsorption kinetics follow pseudo second order model and it attains equilibrium within 20 min. Adsorption isotherm data correlates well with Langmuir isotherm model with a maximum sorption capacity of 993.6 mg of U(VI) per gram of HAp@D-gCN at 298K. U(VI) can be leached from the loaded adsorbent using 0.01 M Na2CO3 as desorbing agent and its sorption capacity remains unaffected even after 4 adsorption-desorption cycles. Hence, the present study reveals that HAp@D-gCN nanocomposite could serve as an environmental friendly material with potential application in environmental remediation.

4.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124449

RESUMO

Carbon-based functional nanocomposites have emerged as potent antimicrobial agents and can be exploited as a viable option to overcome antibiotic resistance of bacterial strains. In the present study, graphitic carbon nitride nanosheets are prepared by controlled calcination of urea. Spectroscopic measurements show that the nanosheets consist of abundant carbonyl groups and exhibit apparent photocatalytic activity under UV photoirradiation towards the selective production of singlet oxygen. Therefore, the nanosheets can effectively damage the bacterial cell membranes and inhibit the growth of bacterial cells, such as Gram-negative Escherichia coli, as confirmed in photodynamic, fluorescence microscopy, and scanning electron microscopy measurements. The results from this research highlight the unique potential of carbon nitride derivatives as potent antimicrobial agents.

5.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125067

RESUMO

Photocatalytic H2 evolution has been regarded as a promising technology to alleviate the energy crisis. Designing graphitic carbon nitride materials with a large surface area, short diffusion paths for electrons, and more exposed reactive sites are beneficial for hydrogen evolution. In this study, a facile method was proposed to dope P into a graphitic carbon nitride framework by calcining melamine with 2-aminoethylphosphonic acid. Meanwhile, PCN nanosheets (PCNSs) were obtained through a thermal exfoliation strategy. Under visible light, the PCNS sample displayed a hydrogen evolution rate of 700 µmol·g-1·h-1, which was 43.8-fold higher than that of pure g-C3N4. In addition, the PCNS photocatalyst also displayed good photostability for four consecutive cycles, with a total reaction time of 12 h. Its outstanding photocatalytic performance was attributed to the higher surface area exposing more reactive sites and the enlarged band edge for photoreduction potentials. This work provides a facile strategy to regulate catalytic structures, which may attract great research interest in the field of catalysis.

6.
Environ Pollut ; : 124715, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39151784

RESUMO

Sulfamethoxazole (SMX) is one of major antibiotic contaminants in current aqueous environment. In this paper, waste loofah and melamine were co-carbonized to prepare biochar-doped g-C3N4 (CCN) by a one-pot method and then combined with Co2PMo11VO40 (CoPMoV) using a binder to obtain the novel polyoxometalates (POMs) photocatalytic composites (CCN/CoPMoV). The incorporation of CoPMoV dramatically reduced the photogenerated carrier recombination and led to a small band gap. Under visible light, the synergetic activation from biochar, g-C3N4 and POMs can remove 98.5% of SMX (k = 0.215 min-1) in the peroxymonosulfate (PMS) system within 20 min and keep its high stability with the degradation of 88.9% after five cycles. Multi-active sites from CCN/CoPMoV are contributed to develop the most active species of , ·OH, 1O2, and h+. The validity in the degradation of SMX makes CCN/CoPMoV a promising and potential material for the removal of aqueous pollutants in the future.

7.
Luminescence ; 39(8): e4871, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39143684

RESUMO

Graphene oxide (GO) and copper nanoparticles (Cu NPs) were incorporated to modulate and enhance the fluorescence properties of pegylated graphite phase carbon nitride (g-C3N4-PEG). Combined with the specific recognition capability of a molecular imprinted polymer (MIP), a highly sensitive and selective fluorescent molecular imprinted probe for dopamine detection was developed. The fluorescent g-C3N4-PEG was synthesized from melamine and modified with GO and Cu NPs to obtain GO/g-C3N4-PEG@Cu NPs. Subsequently, MIP was prepared on the surface of GO/g-C3N4-PEG@Cu NPs using dopamine as the template molecule. Upon elution of the template molecule, a dopamine-specific GO/g-C3N4-PEG@Cu NPs/MIP fluorescence probe was obtained. The fluorescence intensity of the probe was quenched through the adsorption of different concentrations of dopamine by the MIP, thus establishing a novel method for the detection of dopamine. The linear range of dopamine detection was from 5 × 10-11 to 6 × 10-8 mol L-1, with a detection limit of 2.32 × 10-11 mol L-1. The sensor was utilised for the detection of dopamine in bananas, achieving a spiked recovery rate between 90.3% and 101.3%. These results demonstrate that the fluorescence molecular imprinted sensor developed in this study offers a highly sensitive approach for dopamine detection in bananas.


Assuntos
Cobre , Dopamina , Corantes Fluorescentes , Grafite , Nanopartículas Metálicas , Musa , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Dopamina/análise , Grafite/química , Cobre/química , Cobre/análise , Musa/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Espectrometria de Fluorescência , Polímeros Molecularmente Impressos/química , Nitrilas/química , Limite de Detecção , Compostos de Nitrogênio
8.
Chemphyschem ; : e202400356, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080833

RESUMO

On the basis of thermal etching bulk graphitic carbon nitride (g-C3N4), a mild hydrochloric acid treatment method was used in this work to produce g-C3N4 nano-sheets (CNNS) and further carbon nitride with chloride-modification (CNCl). The latter has thinner layer and smaller particle size and exhibit greatly improved dispersibility and solubility in water, DMSO and other polar solvents. A typical photocatalytic reaction in solution driven by CNCl shows a significantly improved photocatalytic performance over bulk g-C3N4 and CNNS. Steady-state analytical tools including SEM, mass, UV-Vis and IR spectroscopies, and time-resolved two-dimensional infrared (2D IR) vibrational spectroscopy, were used together in this work. Better solubility, more flexible structure, smaller size, easier generation of free radicals and lower recombination rate of electron-hole pair, are believed to be reasons for the superior photocatalytic performance of CNCl.

9.
Heliyon ; 10(13): e33354, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39040285

RESUMO

A superficial, one step thermal polycondensation method has been employed for the manifestation of graphene like graphitic carbon nitride (g-C3N4) catalyst. The as synthesized g-C3N4 was well characterized by SEM and EDAX analysis, XRD, ATR-IR, FTIR, Fluorescence spectroscopy, Raman spectroscopy and UV-Visible spectroscopy which provide structural, morphological assemblage relating to the structure of g-C3N4. The g-C3N4 showed that an outstanding photochemical stability, morphology, conductive carbon framework and superior photocatalytic activity. The band gap value of g-C3N4 is 2.34 eV determined using Tauc plot. Due to low band gap (2.33 eV) and unique morphology which provides high separation and migration ability of the photogenerated charges, the g-C3N4 shows enhanced photocatalytic activity for the removal of many organic dyes such as Rhodamine B (RhB), Crystal Violet (CV), Methylene Blue (MB), Methyl Orange (MO), Naphthol Orange (NO) and a phenol derivative, p-Nitrophenol (p-NP). Among them, RhB dye was degraded almost 81 % at 90 min under sunlight irradiation in presence g-C3N4 while other dyes and p-NP was degraded at lower rate. From the experimental data, it was found that MO and p-NP degradation rate was least. The rate constant for degradation of Rh B is 1.1 × 10-2 min-1. Therefore, g-C3N4 can be used as an efficient photocatalyst for waste water treatment by the removal of such organic pollutants.

10.
Int J Biol Macromol ; 276(Pt 2): 133999, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033898

RESUMO

Erythromycin (ERY) molecules are robust to the environment and hard to remove due to their aromatic structure. Nowadays, numerous researches have reported that the ERY amount in water is above the standard level and its removal is necessary. Here, we prepared three solid adsorbents: graphitic carbon nitride (g-C3N4), potassium carrageenan beads (Cr), and graphitic carbon nitride/gum Arabic/potassium carrageenan composite (g-ACr). Several techniques such as XRD, SEM, TEM, TGA, ATR-FTIR, Zeta potential, and N2 adsorption were employed to characterize the fabricated adsorbents. Five essential factors of adsorbent dose, initial ERY concentration, contact time, temperature, and pH were optimized to investigate the batch adsorption of ERY. The maximum adsorption capacity of 356.12 mg/g was attained by g-ACr composite at an adsorbent dose of 1.25 g/L, contact time of 6 h, and pH 7 at 15 °C. The data showed that the experimental findings exhibited the best agreement with Langmuir, Temkin, and DR isotherm models, in addition to the kinetic models of pseudo-second-order, Elovich, and intra-particle diffusion. The evaluated thermodynamic factors designated that the ERY adsorption is endothermic, physisorption, favorable, and spontaneous process. The g-ACr reusability displayed a decline in the adsorption capacity after seven adsorption/desorption runs by 5.7 %. Finally, this work outcomes depict that g-ACr composite is an efficient reusable adsorbent for ERY elimination from wastewater.

11.
J Colloid Interface Sci ; 673: 985-996, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38959699

RESUMO

Due to the high dissociation energy of carbon dioxide (CO2) and sluggish charge transfer dynamics, photocatalytic CO2 reduction with high performance remains a huge challenge. Herein, we report a novel dual-homojunction photocatalyst comprising of cyano/cyanamide groups co-modified carbon nitride (CN-TH) intramolecular homojunction and 1 T/2H-MoSe2 homojunction (denoted as 1 T/2H-MoSe2/CN-TH) for enhanced photocatalytic CO2 reduction. In this dual-homojunction photocatalyst, the intramolecular CN-TH homojunction could promote the intralayer charge separation and transfer owing to the strong electron-withdrawing capabilities of the two-type cyanamide, while the 1 T/2H-MoSe2 homojunction mainly contributes to a promote interlayer charge transport of CN-TH. This could consequently induce a tandem multi-step charge transfer and accelerate the charge transfer dynamics, resulting in enhanced CO2 reduction activities. Thanks to this tandem multi-step charge transfer, the optimized 1 T/2H-MoSe2/CN-TH dual-homojunction photocatalyst presented a high CO yield of 27.36 µmol·g-1·h-1, which is 3.58 and 2.87 times higher than those of 1 T/2H-MoSe2/CN and 2H-MoSe2/CN-TH single homojunctions, respectively. This work provides a novel strategy for efficient CO2 reduction via achieving a tandem multi-step charge transfer through designing dual-homojunction photocatalyst.

12.
J Colloid Interface Sci ; 676: 485-495, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39047376

RESUMO

This work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-C3N4), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m2 g-1) and an average pore diameter (3.6 nm). A simple microwave-assisted preparation method was employed to decorate Cu single-atom over mpg-C3N4 support. The Cu single-atom decorated on mpg-C3N4 support (Cu@mpg-C3N4) is characterized by various characterization techniques, including XRD, UV-visible spectrophotometry, HRTEM, HAADF-STEM with elemental mapping, AC-STEM, ICP-OES, XANES, EXAFS, and BET surface area. These characterization studies confirmed that the Cu@mpg-C3N4 catalyst exhibited high surface area, mesoporous nature, medium band gap, and low metal loading. The as-synthesized and well-characterized Cu@mpg-C3N4 single-atom photocatalyst is then evaluated for its efficacy in converting N-heterocycles into corresponding N-heteroaromatic compounds with excellent conversion and selectivity (>99 %). This transformation is achieved using water as a green solvent and a 30 W white light as a visible light source, demonstrating the catalyst's potential for sustainable and environmentally benign reactions.

13.
Bioelectrochemistry ; 160: 108781, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39047393

RESUMO

Herein, a dual-defective graphite carbon nitride (DDCN) was prepared by polymerization under N2 atmosphere combined with oxidation treatment. The luminous intensity of dual-defect graphite phase carbon nitride based on defect state luminescence is significantly improved compared to CN-air. On this basis, a biosensor for CEA detection was constructed based on specific immunobinding of antigen-antibody. It is noted that the biosensor exhibits a wide linear range of 1 × 10-5 âˆ¼ 1 × 102 ng•mL-1, a low detection limit of 3.3 × 10-4 pg•mL-1, a recovery of 94 %∼105 % and RSD less than 4.41 %. In addition, there was no significant difference to the clinical results, indicating that this work has good clinical application prospects.

14.
Nanomaterials (Basel) ; 14(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057864

RESUMO

Sodium hypophosphite is a promising green source for generating clean elemental hydrogen without pollutants. This study presents the development of an efficient heterogeneous catalyst, Ru/g-C3N4 (Ru/GCN), for hydrogen generation from sodium hypophosphite. The Ru/GCN catalyst demonstrates excellent activity under mild reaction conditions and maintains its effectiveness over multiple cycles without significant loss of activity. This easily separable and recyclable heterogeneous catalyst is straightforward to operate, non-toxic, eco-friendly, and provides a cost-effective alternative to the extensive use of expensive noble metals, which have limited industrial applications. The Ru/GCN catalyst was characterized using various material characterization and spectral methods, including powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). Hypophosphite, combined with the catalytically active and recyclable Ru/GCN catalyst, forms a system with high potential for industrial-scale hydrogen production, suggesting promising avenues for further research and application.

15.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065306

RESUMO

Non-woven jute (NWJ) produced from carpet industry waste was oxidized by H2O2 or alkali-treated by NaOH and compared with water-washed samples. Changes in the structure of the NWJ, tracked by X-ray diffraction (XRD), showed that both chemical treatments disrupt hydrogen bond networks between cellulose Iß chains of the NWJ fibers. Thereafter, nano-carbon nitride (nCN) was impregnated, using a layer-by-layer technique, onto water-washed jute samples (nCN-Jw), NaOH-treated samples (nCN-Ja) and-H2O2 treated samples (nCN-Jo). Analysis of the Fourier transform infrared spectroscopy (FTIR) spectra of the impregnated samples revealed that nCN anchors to the water-washed NWJ surface through hemicellulose and secondary hydroxyl groups of the cellulose. In the case of chemically treated samples, nCN is preferentially bonded to the hydroxymethyl groups of cellulose. The stability and reusability of prepared nCN-jute (nCN-J) samples were assessed by tracking the photocatalytic degradation of Acid Orange 7 (AO7) dye under simulated solar light irradiation. Results from up to ten consecutive photocatalytic cycles demonstrated varying degrees of effectiveness across different samples. nCN-Jo and nCN-Ja samples exhibited declining effectiveness over cycles, attributed to bond instability between nCN and jute. In contrast, the nCN-Jw sample consistently maintained high degradation rates over ten cycles, with a dye removal percentage constantly above 90%.

16.
Food Chem ; 460(Pt 1): 140599, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39067383

RESUMO

In this work, a molecularly imprinted electrochemiluminescence (ECL) sensor was developed for selective detection of 4-nitrophenol (4-NP) in drinking water for the first time. By synthesizing velvet-like graphitic carbon nitride (V-g-C3N4) via one-step thermal polycondensation and integrating it with a molecularly imprinted polymer (MIP), the ECL sensor was fabricated. The MIP-modified V-g-C3N4 composites (MIP/V-g-C3N4) were synthesized using a sol-gel method with 4-NP as the template molecule. Under optimal conditions, the ECL sensor exhibited a wide detection range (5 × 10-10-1 × 10-5 mol/L) and a low detection limit (1.8 × 10-10 mol/L). In testing with actual drinking water samples, it displayed high accuracy (recoveries for intraday and inter-day: 93.50-106.2% and 97.00-107.3%, separately) and precision (RSDs for intraday and inter-day: 1.54-4.59% and 1.53-4.28%, respectively). The developed MIP-based ECL sensor demonstrated excellent selectivity, stability, and reproducibility, offering a promising and reliable approach for highly sensitive and selective determination of 4-NP in drinking water.

17.
ACS Appl Mater Interfaces ; 16(29): 38153-38162, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39010305

RESUMO

The utilization of photoelectrochemical cells (PEC) for converting solar energy into fuels (e.g., hydrogen) is a promising method for sustainable energy generation. We demonstrate a strategy to enhance the performance of PEC devices by integrating surface-functionalized zinc selenide (ZnSe) semiconductor nanocrystals (NCs) into porous polymeric carbon nitride (CN) matrices to form a uniformly distributed blend of NCs within the CN layer via electrophoretic deposition (EPD). The achieved type II heterojunction at the CN/NC interface exhibits intimate contact between the NCs and the CN backbone since it does not contain insulating binders. This configuration promotes efficient charge separation and suppresses carrier recombination. The reported CN/NC composite structure serves as a photoanode, demonstrating a photocurrent density of 160 ± 8 µA cm-2 at 1.23 V vs a reversible hydrogen electrode (RHE), 75% higher compared with a CN-based photoelectrode, for approximately 12 h. Spectral and photoelectrochemical analyses reveal extended photoresponse, reduced charge recombination, and successful charge transfer at the formed heterojunction; these properties result in enhanced PEC oxygen production activity with a Faradaic efficiency of 87%. The methodology allows the integration of high-quality colloidal NCs within porous CN-based photoelectrodes and provides numerous knobs for tuning the functionality of the composite systems, thus showing promise for achieving enhanced solar fuel production using PEC.

18.
Artigo em Inglês | MEDLINE | ID: mdl-39044350

RESUMO

This study proposes the use of diglycolamic acid-functionalized graphitic carbon nitride (HDGA-gCN) as an adsorbent for uranium removal. Our experiments showed that at pH 6.0, HDGA-gCN had a high adsorption capacity of 263.2 mg g-1 and achieved equilibrium in 30 min. The adsorption isotherm was well-fitted by the Langmuir model, and the adsorption kinetics followed a pseudo-second-order equation. U(VI) adsorption on HDGA-gCN is due to electrostatic interactions between the amine, diglycolamic acid, and uranium species. The thermodynamic parameters indicate that adsorption is spontaneous and exothermic. The loaded U(VI) can be desorbed using 0.1 M Na2CO3, and HDGA-gCN exhibited an exceptional adsorption percentage for U(VI) compared to other coexisting ions. HDGA-gCN had faster kinetics, adsorption capacity, and reusability, making it suitable for U(VI) remediation.


Assuntos
Grafite , Termodinâmica , Urânio , Urânio/química , Adsorção , Cinética , Grafite/química , Compostos de Nitrogênio/química
19.
Biosens Bioelectron ; 262: 116569, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39018978

RESUMO

The development of dual-mode strategies with superior sensitivity and accuracy have garnered increasing attention for researchers in Aflatoxin B1 (AFB1) analysis. Herein, a colorimetric-electrochemiluminescence (ECL) dual-mode biosensor was constructed for onsite and ultrasensitive determination of AFB1. The multi-wall carbon nanotubes (MWCNTs) were integrated with the ZnO metal organic frameworks (MOFs) to accelerate the electron transfer and boost the ECL intensity of g-C3N4 nanoemitters. Through the aptamer-based DNA sandwich assay, the CuO@CuPt nanocomposites were introduced onto the electrode and acted as the dual functional signal nanoprobes. Due to the good spectrum overlap between the CuO@CuPt nanoprobes and g-C3N4 nanosheets, ECL signal could be efficiently quenched. Additionally, the CuO@CuPt nanoprobes show superior catalytic properties towards the TMB and H2O2 colorimetric reactions, and an obvious color alteration from colorless to blue can be observed using the smartphone. Under optimized conditions, a sensitive and accurate dual-mode analysis of the AFB1 was accomplished with the colorimetric detection limit of 3.26 fg/mL and ECL detection limit of 0.971 fg/mL (S/N = 3). This study combines innovative nanomaterial properties of ZnO@MWCNTs, g-C3N4 and CuO@CuPt for ultrasensitive dual-mode detection, which offers new opportunities for the innovative engineering of the dual-mode sensors and demonstrates significant potential in food safety analysis.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Colorimetria , Cobre , Limite de Detecção , Nanocompostos , Nanotubos de Carbono , Smartphone , Óxido de Zinco , Aflatoxina B1/análise , Óxido de Zinco/química , Cobre/química , Colorimetria/instrumentação , Nanotubos de Carbono/química , Aptâmeros de Nucleotídeos/química , Nanocompostos/química , Medições Luminescentes , Técnicas Eletroquímicas/métodos , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Grafite , Compostos de Nitrogênio
20.
Food Chem ; 459: 140445, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39024887

RESUMO

The misuse of antibiotics has caused serious impacts on food safety and human health, making it crucial to develop rapidly and highly sensitive methods for detecting trace nitrofuran antibiotics (NFs). In this study, phosphorus, nitride-doped carbon nanosheets (PN/CNs) were synthesized using a simple hydrothermal method based on graphitic carbon nitride. This prepared material showed excellent water solubility and stable optical properties. A new fluorescence sensing platform based on PN/CNs was constructed for the highly sensitive detection of four NFs. This sensitivity was mainly attributed to the fluorescence resonance energy transfer (FRET) mechanism. The limits of detection for nitrofurazone, nitrofurantoin, furazolidone and furaltadone were determined to be 13.41, 15.24, 16.37 and 19.94 nM, respectively. The high sensitivity and selectivity of PN/CNs for these four NFs were thoroughly evaluated by the Stern-Volmer equation and FRET quenching efficiency. This proposed method exhibited high sensitivity and can be successfully applied to detect NFs in fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA