Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38667760

RESUMO

The inadequate vascularization seen in fast-growing solid tumors gives rise to hypoxic areas, fostering specific changes in gene expression that bolster tumor cell survival and metastasis, ultimately leading to unfavorable clinical prognoses across different cancer types. Hypoxia-inducible factors (HIF-1 and HIF-2) emerge as druggable pivotal players orchestrating tumor metastasis and angiogenesis, thus positioning them as prime targets for cancer treatment. A range of HIF inhibitors, notably natural compounds originating from marine organisms, exhibit encouraging anticancer properties, underscoring their significance as promising therapeutic options. Bioprospection of the marine environment is now a well-settled approach to the discovery and development of anticancer agents that might have their medicinal chemistry developed into clinical candidates. However, despite the massive increase in the number of marine natural products classified as 'anticancer leads,' most of which correspond to general cytotoxic agents, and only a few have been characterized regarding their molecular targets and mechanisms of action. The current review presents a critical analysis of inhibitors of HIF-1 and HIF-2 and hypoxia-selective compounds that have been sourced from marine organisms and that might act as new chemotherapeutic candidates or serve as templates for the development of structurally similar derivatives with improved anticancer efficacy.


Assuntos
Antineoplásicos , Organismos Aquáticos , Produtos Biológicos , Fator 1 Induzível por Hipóxia , Neoplasias , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organismos Aquáticos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/uso terapêutico , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
2.
Sci Total Environ ; 892: 164476, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37257616

RESUMO

Bioactive natural products from marine invasive species may dramatically impact native communities, while many synthetic pharmaceutical drugs are released into the marine environment and have long-lasting harmful effects on aquatic life. Sometimes, metabolites from alien species and synthetic compounds share similar mechanisms of action, suggesting comparable ecotoxicological impacts. This applies to the alkaloid caulerpin (CAU) from the green algae Caulerpa cylindracea, highly invasive in the Mediterranean Sea, and to the synthetic lipid-lowering drug fenofibrate (FFB), both acting as agonists of peroxisome proliferator-activated receptors (PPARs). Analogies with FFB, which is widely considered hazardous to the aquatic environment, have led to concerns about the ecotoxicological potential of CAU. The problem has implications for public health as CAU is well known to enter the food web accumulating in fish of commercial importance. Here, we compared the effects of FFB and CAU through biochemical and histopathological analysis on a relevant bioindicator molluscan species, the mussel Mytilus galloprovincialis. Under laboratory conditions, mussels were fed with food enriched with CAU or FFB. After treatment, biochemical markers were analyzed revealing metabolic capacity impairments, cellular damage, and changes in acetylcholinesterase activity in mussels fed with FFB-enriched food. NMR-based metabolomic studies also showed significant alterations in the metabolic profiles of FFB-treated mussels. In addition, dietary administration of FFB produced morphological alterations in the mussels' gills and digestive tubules. Obtained results confirm that FFB is harmful to aquatic life and that its release into the environment should be avoided. Conversely, dietary treatment with CAU did not produce any significant alterations in the mussels. Overall, our results pave the way for the possible valorization of the huge biomass from one of the world's worst invasive species to obtain CAU, a natural product of interest in drug discovery.


Assuntos
Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Mytilus edulis/metabolismo , Espécies Introduzidas , Acetilcolinesterase/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise
3.
Mar Drugs ; 20(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36547936

RESUMO

Inflammation is an organism's response to chemical or physical injury. It is split into acute and chronic inflammation and is the last, most significant cause of death worldwide. Nowadays, according to the World Health Organization (WHO), the greatest threat to human health is chronic disease. Worldwide, three out of five people die from chronic inflammatory diseases such as stroke, chronic respiratory diseases, heart disorders, and cancer. Nowadays, anti-inflammatory drugs (steroidal and non-steroidal, enzyme inhibitors that are essential in the inflammatory process, and receptor antagonists, among others) have been considered as promising treatments to be explored. However, there remains a significant proportion of patients who show poor or incomplete responses to these treatments or experience associated severe side effects. Seaweeds represent a valuable resource of bioactive compounds associated with anti-inflammatory effects and offer great potential for the development of new anti-inflammatory drugs. This review presents an overview of specialized metabolites isolated from seaweeds with in situ and in vivo anti-inflammatory properties. Phlorotannins, carotenoids, sterols, alkaloids, and polyunsaturated fatty acids present significant anti-inflammatory effects given that some of them are involved directly or indirectly in several inflammatory pathways. The majority of the isolated compounds inhibit the pro-inflammatory mediators/cytokines. Studies have suggested an excellent selectivity of chromene nucleus towards inducible pro-inflammatory COX-2 than its constitutive isoform COX-1. Additional research is needed to understand the mechanisms of action of seaweed's compounds in inflammation, given the production of sustainable and healthier anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Alga Marinha , Humanos , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Alga Marinha/química , Alga Marinha/metabolismo
4.
Mar Drugs ; 20(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005516

RESUMO

The invasive macroalga Caulerpa cylindracea has spread widely in the Mediterranean Sea, becoming a favorite food item for native fish for reasons yet unknown. By using a combination of behavioral, morphological, and molecular approaches, herein we provide evidence that the bisindole alkaloid caulerpin, a major secondary metabolite of C. cylindracea, significantly increases food intake in the model fish Danio rerio, influencing the regulation of genes involved in the orexigenic pathway. In addition, we found that the compound improves fish reproductive performance by affecting the hypothalamus-pituitary-gonadal axis. The obtained results pave the way for the possible valorization of C. cylindracea as a sustainable source of a functional feed additive of interest to face critical challenges both in aquaculture and in human nutrition.


Assuntos
Alcaloides , Caulerpa , Dourada , Alga Marinha , Animais , Humanos , Mar Mediterrâneo
5.
Nat Prod Res ; 36(8): 2149-2153, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33222553

RESUMO

Caulerpin is a bisindolic alkaloid that has been obtained from many species of the genus Caulerpa. The main objective of this paper is to evaluate four extraction methods of caulerpin in the C. racemosa: maceration (DMA), Soxhlet extraction (SOX), ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE). The methods were compared through caulerpin content quantified by Ultraviolet-visible (UV-vis) spectrophotometry. The highest extract yield was obtained by SOX but the highest contain of caulerpin was presented in the MAE extract. The caulerpin content was significant different within the extacts by MAE and UAE, it yielded by MAE more than three times as much as UAE. The most efficient caulerpin extraction method had the parameters solvent, temperature and time optimised. Thus, the best conditions were achieved with MAE in ethanol during 7 min at 90 °C. Therefore, this work suggests an improved routine analysis of caulerpin by the green chemistry concept.


Assuntos
Caulerpa , Caulerpa/química , Indóis/química , Micro-Ondas , Solventes/química
6.
Struct Chem ; 32(4): 1415-1430, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33437137

RESUMO

Recently, the SARS-CoV-2 (COVID-19) pandemic virus has been spreading throughout the world. Until now, no certified drugs have been discovered to efficiently inhibit the virus. The scientists are struggling to find new safe bioactive inhibitors of this deadly virus. In this study, we aim to find antagonists that may inhibit the activity of the three major viral targets: SARS-CoV-2 3-chymotrypsin-like protease (6LU7), SARS-CoV-2 spike protein (6VYB), and a host target human angiotensin-converting enzyme 2 (ACE2) receptor (1R42), which is the entry point for the viral encounter, were studied with the prospects of identifying significant drug candidate(s) against COVID-19 infection. Then, the protein stability produced score of less than 0.6 for all residues of all studied receptors. This confirmed that these receptors are extremely stable proteins, so it is very difficult to unstable the stability of these proteins through utilizing individual drugs. Hence, we studied the combination and tricombination therapy between bioactive compounds which have the best binding affinity and some antiviral drugs like chloroquine, hydroxychloroquine, azithromycin, simeprevir, baloxavir, lopinavir, and favipiravir to show the effect of combination and tricombination therapy to disrupt the stability of the three major viral targets that are mentioned previously. Also, ADMET study suggested that most of all studied bioactive compounds are safe and nontoxic compounds. All results confirmed that caulerpin can be utilized as a combination and tricombination therapy along with the studied antiviral drugs for disrupting the stability of the three major viral receptors (6LU7, 6VYB, and 1R42). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11224-020-01723-5.

7.
J Biomol Struct Dyn ; 39(14): 5137-5147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32579063

RESUMO

Caulerpin, a bis-indole alkaloid is isolated from a new source Sargassum platycarpum, brown alga (family Sargassaceae) for the first time. The structure of caulerpin was characterized by IR, H1NMR, C13 NMR, HSQC, HMBC, EI-MS spectroscopy. Antifungal results suggest that caulerpin has been inhibited Cryptococcus neoformas (12 mm) and Candida albicans (7 mm) than other microbes. In vitro anticancer activity of caulerpin has been explored by cell viability assay against new human cancer cell line (liver-HepG2). The results show that caulerpin has low IC50 value (24.6 ± 2.1 µg/mL) against HepG-2. Based on the least toxic activity of caulerpin, these results encourage for future in vivo anticancer study. The binding of caulerpin molecule with the two nucleobases (T/U) bases has been studied by DFT methods. According to the AIM analysis, there are two types of interactions between caulerpin and T/U bases partially covalent partially electrostatic and electrostatic in gas and water phases. Based on NBO analysis, the charges were transferred from the lone-pair (n) in orbitals of O atoms of caulerpin to the σ* orbitals of T/U bases atoms. ΔEbin in the state of caulerpin-T bases complexes are lower than those in the caulerpin-U bases complexes in both gas and water phase. MD simulation supported that caulerpin-T/U bases complexes are stable in presence of explicit water phase. Thus, the findings of our study will be useful for giving an insight into the caulerpin/bases complexes that could be helpful in future experimental studies to develop the performance of caulerpin molecules as natural candidate drug. Communicated by Ramaswamy H. Sarma.


Assuntos
Sargassum , Teoria da Densidade Funcional , Humanos , Alcaloides Indólicos , Indóis , Simulação de Acoplamento Molecular
8.
Artigo em Inglês | MEDLINE | ID: mdl-32998618

RESUMO

This work aimed at evaluating the inhibitory effect of ten natural bioactive compounds (1-10) as potential inhibitors of SARS-CoV-2-3CL main protease (PDB ID: 6LU7) and SARS-CoV main proteases (PDB IDs: 2GTB and 3TNT) by molecular docking analysis. The inhibitory effect of all studied compounds was studied with compared to some proposed antiviral drugs which currently used in COVID-19 treatment such as chloroquine, hydroxychloroquine, azithromycin, remdesivir, baloxvir, lopinavir, and favipiravir. Homology modeling and sequence alignment was computed to evaluate the similarity between the SARS-CoV-2-3CL main protease and other SARS-CoV receptors. ADMET properties of all studied compounds were computed and reported. Also, molecular dynamic (MD) simulation was performed on the compound which has the highest binding affinity inside 6LU7 obtained from molecular docking analysis to study it is stability inside receptor in explicit water solvent. Based on molecular docking analysis, we found that caulerpin has the highest binding affinity inside all studied receptors compared to other bioactive compounds and studied drugs. Our homology modeling and sequence alignment showed that SARS-CoV main protease (PDB ID: 3TNT) shares high similarity with 3CLpro (96.00%). Also, ADMET properties confirmed that caulerpin obeys Lipinski's rule and passes ADMET property, which make it a promising compound to act as a new safe natural drug against SARS-CoV-2-3CL main protease. Finally, MD simulation confirmed that the complex formed between caulerpin and 3CLpro is stable in water explicit and had no major effect on the flexibility of the protein throughout the simulations and provided a suitable basis for our study. Also, binding free energy between caulerpin and 6LU7 confirmed the efficacy of the caulerpin molecule against SARS-CoV-2 main protease. So, this study suggested that caulerpin could be used as a potential candidate in COVID-19 treatment.


Assuntos
Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Cisteína Endopeptidases/metabolismo , Indóis/farmacologia , Proteínas não Estruturais Virais/metabolismo , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , SARS-CoV-2
9.
Struct Chem ; 31(6): 2391-2412, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32837118

RESUMO

Presently, the SARS-CoV-2 (COVID-19) pandemic has been spreading throughout the world. Some drugs such as lopinavir, simeprevir, hydroxychloroquine, chloroquine, and amprenavir have been recommended for COVID-19 treatment by some researchers, but these drugs were not effective enough against this virus. This study based on in silico approaches was aimed to increase the anti-COVID-19 activities of these drugs by using caulerpin and its derivatives as an adjunct drug against SARS-CoV-2 receptor proteins: the SARS-CoV-2 main protease and the SARS-CoV-2 spike protein. Caulerpin exhibited antiviral activities against chikungunya virus and herpes simplex virus type 1. Caulerpin and some of its derivatives showed inhibitory activity against Alzheimer's disease. The web server ANCHOR revealed higher protein stability for the two receptors with disordered score (< 0.6). Molecular docking analysis showed that the binding energies of most of the caulerpin derivatives were higher than all the suggested drugs for the two receptors. Also, we deduced that inserting NH2, halogen, and vinyl groups can increase the binding affinity of caulerpin toward 6VYB and 6LU7, while inserting an alkyl group decreases the binding affinity of caulerpin toward 6VYB and 6LU7. So, we can modify the inhibitory effect of caulerpin against 6VYB and 6LU7 by inserting NH2, halogen, and vinyl groups. Based on the protein disordered results, the SARS-CoV-2 main protease and SARS-CoV-2 spike protein domain are highly stable proteins, so it is quite difficult to unstabilize their integrity by using individual drugs. Also, molecular dynamics (MD) simulation indicates that binding of the combination therapy of simeprevir and the candidate studied compounds to the receptors was stable and had no major effect on the flexibility of the protein throughout the simulations and provided a suitable basis for our study. So, this study suggested that caulerpin and its derivatives could be used as a combination therapy along with lopinavir, simeprevir, hydroxychloroquine, chloroquine, and amprenavir for disrupting the stability of SARS-CoV2 receptor proteins to increase the antiviral activity of these drugs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30852662

RESUMO

Recent studies have suggested that Mediterranean indigenous fish species are affected by bioactive metabolites coming from marine invasive species via food web interactions. In particular, both physiological and behavioural changes in the white sea bream Diplodus sargus were related to caulerpin (CAU), a bisindolic alkaloid particularly abundant in the invasive alga Caulerpa cylindracea, on which the fish actively feed. Dietary administration of CAU decreased aggressiveness in D. sargus, suggesting an anxiolytic-like effect of CAU possibly mediated by endogenous anxiolytic agents. This hypothesis is supported here by the finding of a significant increase of NPY transcriptional expression in the brain of fish fed with CAU enriched food, shedding more light on the neural mechanisms behind the altered behaviour of D. sargus.


Assuntos
Encéfalo/efeitos dos fármacos , Indóis/farmacologia , Neuropeptídeo Y/biossíntese , Dourada , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Dieta
11.
Mini Rev Med Chem ; 19(9): 751-761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28971770

RESUMO

Marine bis-indole alkaloids comprise a large and increasingly growing class of secondary metabolites, and continue to deliver a great variety of structural templates for diverse biological targets. The alkaloids derived from marine resources play a crucial role in medicinal chemistry and as chemical agents. In particular, bis-indole alkaloid caulerpin which has been isolated from marine green algae Caulerpa and a red algae Chondria armata at various places around the world, was tested for several therapeutic potentials such as anti-diabetic, antinociceptive, anti-inflammatory, anti-tumor, anti- larvicidal, anti-herpes, anti-tubercular, anti-microbial and immunostimulating activities as well as a means of other chemical agents. Herein, we summarized the discovery and isolation of caulerpin, and its potential medicinal and chemical applications in chronological order with various aspects. Additionally, synthesis of caulerpin and its functional analogues have also been reviewed.


Assuntos
Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Indóis/química , Indóis/farmacologia , Adjuvantes Imunológicos/síntese química , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/isolamento & purificação , Adjuvantes Imunológicos/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Caulerpa/química , Técnicas de Química Sintética/métodos , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Alcaloides Indólicos/síntese química , Alcaloides Indólicos/isolamento & purificação , Indóis/síntese química , Indóis/isolamento & purificação , Rodófitas/química
12.
Mar Drugs ; 16(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400299

RESUMO

Although the chemical warfare between invasive and native species has become a central problem in invasion biology, the molecular mechanisms by which bioactive metabolites from invasive pests influence local communities remain poorly characterized. This study demonstrates that the alkaloid caulerpin (CAU)-a bioactive component of the green alga Caulerpa cylindracea that has invaded the entire Mediterranean basin-is an agonist of peroxisome proliferator-activated receptors (PPARs). Our interdisciplinary study started with the in silico prediction of the ligand-protein interaction, which was then validated by in vivo, ex vivo and in vitro assays. On the basis of these results, we candidate CAU as a causal factor of the metabolic and behavioural disorders observed in Diplodus sargus, a native edible fish of high ecological and commercial relevance, feeding on C. cylindracea. Moreover, given the considerable interest in PPAR activators for the treatment of relevant human diseases, our findings are also discussed in terms of a possible nutraceutical/pharmacological valorisation of the invasive algal biomasses, supporting an innovative strategy for conserving biodiversity as an alternative to unrealistic campaigns for the eradication of invasive pests.


Assuntos
Fatores Biológicos/farmacologia , Caulerpa/metabolismo , Doenças dos Peixes/etiologia , Indóis/toxicidade , Espécies Introduzidas , Perciformes/fisiologia , Receptores Ativados por Proliferador de Peroxissomo/agonistas , Animais , Fatores Biológicos/metabolismo , Simulação por Computador , Ecotoxicologia , Doenças dos Peixes/metabolismo , Cadeia Alimentar , Indóis/metabolismo , Ligantes , Modelos Biológicos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
13.
Mar Drugs ; 16(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205459

RESUMO

Caulerpin (CLP), an alkaloid from algae of the genus Caulerpa, has shown anti-inflammatory activity. Therefore, this study aimed to analyze the effect of CLP in the murine model of peritonitis and ulcerative colitis. Firstly, the mice were submitted to peritonitis to evaluate which dose of CLP (40, 4, or 0.4 mg/kg) could decrease the inflammatory infiltration in the peritoneum. The most effective doses were 40 and 4 mg/kg. Then, C57BL/6 mice were submitted to colitis development with 3% dextran sulfate sodium (DSS) and treated with CLP at doses of 40 and 4 mg/kg. The disease development was analyzed through the disease activity index (DAI); furthermore, colonic tissue samples were submitted to histological analysis, NFκB determination, and in vitro culture for cytokines assay. Therefore, CLP at 4 mg/kg presented the best results, triggering improvement of DAI and attenuating the colon shortening and damage. This dose was able to reduce the TNF-α, IFN-γ, IL-6, IL-17, and NFκB p65 levels, and increased the levels of IL-10 in the colon tissue. Thus, CLP mice treatment at a dose of 4 mg/kg showed promising results in ameliorating the damage observed in the ulcerative colitis.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Caulerpa/metabolismo , Colite Ulcerativa/tratamento farmacológico , Indóis/farmacologia , Alga Marinha/metabolismo , Alcaloides/isolamento & purificação , Alcaloides/uso terapêutico , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Indóis/isolamento & purificação , Indóis/uso terapêutico , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Peritonite/patologia , Resultado do Tratamento , Zimosan/toxicidade
14.
Rev. bras. farmacogn ; 25(6): 690-697, Nov.-Dec. 2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-769941

RESUMO

Abstract Natural marine products can help increase the quality of life in patients with neurological diseases. A large number of marine products act against Alzheimer's disease through varying pathways. According to structure- and ligand-based analyses, caulerpin, an alkaloid primarily isolated from the genus Caulerpa, possesses activity against monoamine oxidase B. To predict the activity of caulerpin, we employed Volsurf descriptors and the machine learning Random Forest algorithm in parallel with a structure-based methodology that included molecular docking. Using caulerpin as a lead compound, a database containing 108 analogs was evaluated, and nine were selected as active. The structures selected as active exhibited polar and non-polar substitutions on the caulerpin skeleton, which were relevant for their activity. Dragon consensus drug-like scoring was applied to identify the active analogs that might serve as good drug candidates, and the entire group presented satisfactory performance. These results indicate the possibility of using these analogs as potential leads against Alzheimer's disease.

15.
Iran J Pharm Res ; 13(2): 515-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25237346

RESUMO

General toxicity, antiproliferative, antibacterial and antioxidant activities of Caulerpa peltata J.V.Lamouroux (Caulerpaceae) collected from Oman Sea were investigated. Dried, ground alga was Soxhlet-extracted with hexane, dichloromethane and methanol successively. The methanol extract was subjected to vacuum liquid chromatography (VLC) fractionation on silica gel using a step gradient of different mixture of solvents. A known alkaloid, caulerpin, was subsequently isolated from the fraction eluted by ethyl acatete100%. The antioxidant activity of all extracts was assessed by using the (DPPH) assay. Antiproliferative activity of the all extracts and caulerpin against the cancerous cell line was evaluated using MTT assay. General toxicity of extracts was determined using Brine Shrimp Lethality Assay (BSLA). Based on our results, a weak activity observed for all extracts in MTT assay, while they were toxic toward brine shrimp nauplii comparing to the podophylotoxin. This is the first report on phytochemistry and bioactivity of C. peltata which collected from Oman Sea.

16.
Alkaloids Chem Biol ; 73: 1-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26521648

RESUMO

This chapter, covering the chemistry literature up until June 2013 and comprising 142 references, records the chemical structures of 130 bi-, bis-, and trisindole alkaloids isolated from a plethora of marine phyla including bacteria, algae, bryozoans, sponges, mollusks, hard corals, and ascidians. While the vast majority of bisindoles have been isolated from marine sponges, biindoles are more commonly found in red algae species than sponges. Trisindoles are far less common than bisindoles in the marine environment and have been limited to two species of sponge and a single species of marine microbe. Antimicrobial activity and cytotoxicity dominate the bioactivities explored for selected members of this family of alkaloids. Synthetic approaches to 28 natural products are presented in 33 schemes, and in the absence of any in vivo biosynthetic studies, the putative biosyntheses of eight bisindole metabolites are presented.

17.
Rev. bras. farmacogn ; 22(4): 813-817, jul.-ago. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640343

RESUMO

Bovine viral diarrhea virus (BVDV) is an etiologic agent that causes important economic losses in the world. It is endemic in cattle herds in most parts of the world. The purpose of this study was to evaluate the in vitro cytotoxic effect and antiviral properties of several marine natural products obtained from seaweeds: the indole alkaloid caulerpin (CAV, 1) and three diterpenes: 6-hydroxydichotoma-3,14-diene-1,17-dial (DA, 2), 10,18-diacetoxy-8-hydroxy-2,6-dolabelladiene (DB1, 3) and 8,10,18-trihydroxy-2,6-dolabelladiene (DB3, 4). The screening to evaluate the cytotoxicity of compounds did not show toxic effects to MDBK cells. The antiviral activity of the compounds was measured by the inhibition of the cytopathic effect on infected cells by plaque assay (PA) and EC50 values were calculated for CAV (EC=2,0± 5.8), DA (EC 2,8± 7.7), DB1 (EC 2,0±9.7), and DB3 (EC 2,3±7.4). Acyclovir (EC50 322± 5.9) was used in all experiments as the control standard. Although the results of the antiviral activity suggest that all compounds are promising as antiviral agents against BVDV, the Selectivity Index suggests that DB1 is the safest of the compounds tested.

18.
Rev. bras. farmacogn ; 22(4): 861-867, jul.-ago. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-640348

RESUMO

About 80% of the human adult population is infected with HSV-1. Although there are many anti-HSV-1 drugs available (acyclovir, ganciclovir, valaciclovir, foscarnet), their continuous use promotes the selection of resistant strains, mainly in ACV patients. In addition to resistance, the drugs also have toxicity, particularly when administration is prolonged. The study of new molecules isolated from green algae with potential antiviral activity represents a good opportunity for the development of antiviral drugs. Caulerpin, the major product from the marine algae Caulerpa Lamouroux (Caulerpales), is known for its biological activities such as antioxidant, antifungal, acetylcholinesterase inhibitor (AChE) and antibacterial activity. In this work, we show that caulerpin could be an alternative to acyclovir as an anti-HSV-1 drug that inhibits the alpha and beta phases of the replication cycle.

19.
Mar Drugs ; 7(4): 689-704, 2009 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20098607

RESUMO

The antinociceptive and anti-inflammatory activity of caulerpin was investigated. This bisindole alkaloid was isolated from the lipoid extract of Caulerpa racemosa and its structure was identified by spectroscopic methods, including IR and NMR techniques. The pharmacological assays used were the writhing and the hot plate tests, the formalin-induced pain, the capsaicin-induced ear edema and the carrageenan-induced peritonitis. Caulerpin was given orally at a concentration of 100 micromol/kg. In the abdominal constriction test caulerpin showed reduction in the acetic acid-induced nociception at 0.0945 micromol (0.0103-1.0984) and for dypirone it was 0.0426 micromol (0.0092-0.1972). In the hot plate test in vivo the inhibition of nociception by caulerpin (100 micromol/kg, p.o.) was also favorable. This result suggests that this compound exhibits a central activity, without changing the motor activity (seen in the rotarod test). Caulerpin (100 micromol/kg, p.o.) reduced the formalin effects in both phases by 35.4% and 45.6%, respectively. The possible anti-inflammatory activity observed in the second phase in the formalin test of caulerpin (100 micromol/kg, p.o.) was confirmed on the capsaicin-induced ear edema model, where an inhibition of 55.8% was presented. Indeed, it was also observed in the carrageenan-induced peritonitis that caulerpin (100 micromol/kg, p.o.) exhibited anti-inflammatory activity, reducing significantly the number of recruit cells by 48.3%. Pharmacological studies are continuing in order to characterize the mechanism(s) responsible for the antinociceptive and anti-inflammatory actions and also to identify other active principles present in Caulerpa racemosa.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Caulerpa/química , Edema/tratamento farmacológico , Alcaloides Indólicos/uso terapêutico , Indóis/uso terapêutico , Dor/tratamento farmacológico , Alga Marinha/química , Analgésicos/isolamento & purificação , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Capsaicina , Carragenina , Relação Dose-Resposta a Droga , Edema/induzido quimicamente , Feminino , Formaldeído , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/farmacologia , Indóis/isolamento & purificação , Indóis/farmacologia , Masculino , Camundongos , Dor/induzido quimicamente , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA