RESUMO
A new coordination polymer {[Cd(C12H13O5)2(4,4'-bpy)(H2O)2]}n (Cd-Tmca-bpy) was constructed with trans-2,3,4-Trimethoxycinnamic acid (HTmca) and 4,4'-Bipyridine (4,4'-bpy) ligands. This complex was structurally characterized on the basis of elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction and thermogravimetric analyses. X-ray crystallography revealed that the complex was monoclinic, space group C2/c. The Cd(II) ion in the complex was six coordinated, adopting an octahedron geometry. The neighboring Cd(II) ions linked linear ligand 4,4'-bpy molecules to form an infinite 1D chain. The 1D chain was further interlinked by O-H···O and C-H···O hydrogen bonds, resulting in a 3-D supramolecular framework. Meanwhile, the photoluminescence spectrum of the Cd(II) complex at room temperature exhibited an emission maximum at 475 nm. Using the time-dependent density functional theory (TD-DFT) method, the electronic absorption spectra of the Cd(II) complex was predicted. A good agreement was achieved between the predicted spectra and the experimental data. Bioactivity studies showed that the complex exhibited significant inhibition halos against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus).
RESUMO
Detection of nitro pollutants is an important topic in environmental protection. A total of 3 Cd (II) complexes (1-3) based on 3 soft organic isomers, n-(3,5-dicarboxylato benzyloxy) benzoic acid (n = 2, 3 or 4-H3DBB), and a linear N-donor ligand, 3-bis(imidazole-l-ylmethyl) benzene (3-bibz), have been synthesized hydrothermally. Structural diversity of Complexes 1-3 displays the architectural 2D or 3D change: Complex 1 exhibits a 2D network featuring tri-nuclear metal units, Complex 2 is a 3D framework based on similar tri-nuclear metal units, and Complex 3 shows a 3D network with binuclear units. Fluorescent sensing properties exhibited in all these complexes have been discovered to detect nitrobenzene (NB) selectively and sensitively. In particular, Complex 3 possesses high sensitivity for NB with the lowest detection limit of 1.15 × 10-10 M. The results of the theoretical calculation verified the fluorescence detection mechanism of NB by these Cd-based complexes. Therefore, these Cd-based complexes might be used as excellent luminescent sensors for NB.
RESUMO
In this study, a new Cd(II)-bearing coordination polymer with the chemical formula of {[Cd4(meda)3(dpe)4(H2O)4]·(NO3)2·2(H2O)}n (1, H2meda = 3,3'-methylenedibenzoic acid, dpe = 1,2-di(pyridin-4-yl)ethane) has been successfully prepared by reaction of Cd(NO3)·4H2O with a V-shape carboxyl ligand H2meda along with the linear dipyridine ligand dpe under the hydrothermal conditions. Due to its intensive luminescence, complex 1 could be utilized as the sensor of detecting Al3+ ion, and its detection limit is 4 × 10-6 M. Firstly, the toxicity of the compound on the normal liver cells was determined with Cell Counting Kit-8 detection kit. The triglyceride in liver cells was detected by detection kit after compound treatment and the relative expression of 15-lox and 12-lox in L02 cells was also measured by RT-PCR after compound treatment. In addition, multiple functional groups that provided by the synthesized Cd(II) complex have been studied by using molecular docking simulation for the confirmation of possible binding modes that formed between ligand and receptor.
Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Polímeros/química , Triglicerídeos/metabolismo , Linhagem Celular , Complexos de Coordenação/uso terapêutico , Ligantes , Lipoxigenases/metabolismoRESUMO
A mononuclear cadmium(II) complex of formula [Cd(5,5'-dmbipy)2(OAc)2]·2H2O (5,5'-dmbipy = 5,5'-dimethyl-2,2'-bipyridine and OAc = acetato ligand) has been synthesized and characterized by FT-IR, UV-Vis, 1H-NMR, elemental analysis and single-crystal X-ray structure analysis. The molecular structure of the complex shows a distorted tetragonal antiprism CdN4O4 coordination geometry around the cadmium atom, resulting in coordination by four nitrogen atoms from two 5,5'-dmbipy ligands and four oxygen atoms from two acetate anions. The interaction of this complex to FS-DNA (fish sperm DNA) has also been studied by electronic absorption, fluorescence and gel electrophoresis techniques. Binding constant (Kb), Stern-Volmer constant (Ksv), number of binding sites (n) and bimolecular quenching rate constant (kq) have been calculated from these spectroscopic data. These results have revealed that the metal complex can bind effectively to FS-DNA via groove binding. The calculated thermodynamic parameters (ΔH°, ΔS° and ΔG°) show that hydrogen bonding and van der Waals forces have an important function in the Cd(II) complex-DNA interaction. The antibacterial effects of the synthesized cadmium complex have also been examined in vitro against standard bacterial strains: one Gram-positive (Staphylococcus aureus, ATCC 25923) and one Gram-negative (Escherichia coli, ATCC 25922) bacteria, using disk diffusion and macro-dilution broth methods. The obtained results show that the Cd(II) complex exhibits a marked antibacterial activity which is significantly better than those observed for its free ligand and metal salt for both Gram-positive and Gram-negative bacteria. However, this metal complex is a more potent antibacterial agent against the Gram-positive than that of the Gram-negative bacteria.Communicated by Ramaswamy H. Sarma.
Assuntos
Cádmio/química , Modelos Moleculares , Piridinas/química , Piridinas/farmacologia , Algoritmos , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Técnicas de Química Sintética , Cristalografia por Raios X , DNA/química , Ligação de Hidrogênio , Ligantes , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piridinas/síntese química , Espectroscopia de Infravermelho com Transformada de Fourier , TermodinâmicaRESUMO
A novel binuclear Cd complex (1) with hydrazone-based ligand was prepared and characterized by spectroscopy and single crystal X-ray diffraction techniques. Complex 1 reveals a strong pro-apoptotic activity in both human, mammary adenocarcinoma cells (MCF-7) and pancreatic AsPC-1 cancer stem cells (CSCs). While apoptosis undergoes mostly caspase-independent, 1 stimulates the activation of intrinsic pathway with noteworthy down regulation of caspase-8 activity in respect to non-treated controls. Distribution of cells over mitotic division indicates that 1 caused DNA damage in both cell lines, which is confirmed in DNA interaction studies. Compared to 1, cisplatin (CDDP) does not achieve cell death in 2D cultured AsPC-1 cells, while induces different pattern of cell cycle changes and caspase activation in 2D cultured MCF-7 cells, implying that these two compounds do not share similar mechanism of action. Additionally, 1 acts as a powerful inducer of mitochondrial superoxide production with dissipated trans-membrane potential in the majority of the treated cells already after 6â¯h of incubation. On 3D tumors, 1 displays a superior activity against CSC model, and at 100⯵M induces disintegration of spheroids within 2â¯days of incubation. Fluorescence spectroscopy, along with molecular docking show that compound 1 binds to the minor groove of DNA. Compound 1 binds to the human serum albumin (HSA) showing that the HSA can effectively transport and store 1 in the human body. Thus, our current study strongly supports further investigations on antitumor activity of 1 as a drug candidate for the treatment of highly resistant pancreatic cancer.