Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390.890
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Biomed Opt ; 29(Suppl 2): S22702, 2025 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38434231

RESUMO

Significance: Advancements in label-free microscopy could provide real-time, non-invasive imaging with unique sources of contrast and automated standardized analysis to characterize heterogeneous and dynamic biological processes. These tools would overcome challenges with widely used methods that are destructive (e.g., histology, flow cytometry) or lack cellular resolution (e.g., plate-based assays, whole animal bioluminescence imaging). Aim: This perspective aims to (1) justify the need for label-free microscopy to track heterogeneous cellular functions over time and space within unperturbed systems and (2) recommend improvements regarding instrumentation, image analysis, and image interpretation to address these needs. Approach: Three key research areas (cancer research, autoimmune disease, and tissue and cell engineering) are considered to support the need for label-free microscopy to characterize heterogeneity and dynamics within biological systems. Based on the strengths (e.g., multiple sources of molecular contrast, non-invasive monitoring) and weaknesses (e.g., imaging depth, image interpretation) of several label-free microscopy modalities, improvements for future imaging systems are recommended. Conclusion: Improvements in instrumentation including strategies that increase resolution and imaging speed, standardization and centralization of image analysis tools, and robust data validation and interpretation will expand the applications of label-free microscopy to study heterogeneous and dynamic biological systems.


Assuntos
Técnicas Histológicas , Microscopia , Animais , Citometria de Fluxo , Processamento de Imagem Assistida por Computador
2.
Artigo em Inglês | MEDLINE | ID: mdl-38725874

RESUMO

Objective: Iodine staining on white light imaging (WLI) is the gold standard for detecting and demarcating esophageal squamous cell carcinoma (ESCC). We examined the effects of texture and color enhancement imaging (TXI) on improving the endoscopic visibility of ESCC under iodine staining. Methods: Twenty ESCC lesions that underwent endoscopic submucosal dissection were retrospectively included. The color difference between ESCC and the surrounding mucosa (ΔEe) on WLI, TXI, and narrow-band imaging was assessed, and ΔEe under 1% iodine staining on WLI and TXI. Furthermore, the visibility grade determined by endoscopists was evaluated on each imaging. Result: The median ΔEe was greater on TXI than on WLI (14.53 vs. 10.71, respectively; p < 0.005). Moreover, the median ΔEe on TXI under iodine staining was greater than the median ΔEe on TXI and narrow-band imaging (39.20 vs. 14.53 vs. 16.42, respectively; p < 0.005 for both). A positive correlation in ΔEe under iodine staining was found between TXI and WLI (correlation coefficient = 0.61, p < 0.01). Moreover, ΔEe under iodine staining on TXI in each lesion was greater than the corresponding ΔEe on WLI. The visibility grade assessed by endoscopists on TXI was also significantly greater than that on WLI under iodine staining (p < 0.01). Conclusions: The visibility of ESCC after iodine staining was greater on TXI than on WLI.

3.
J Clin Immunol ; 44(5): 118, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758417

RESUMO

Deficiency of Adenosine Deaminase 2 (DADA2) patients presenting with primary immunodeficiency are at risk of uncontrolled EBV infection and secondary malignancies including EBV-related lymphoproliferative disorders (LPD). This paper describes the first case of EBV related diffuse large B-cell lymphoma in a patient with DADA2 and uncontrolled EBV infection. Consideration should be given to monitoring for EBV viraemia and to preventative EBV specific therapy in DADA2 and patients with at risk primary immunodeficiencies. A type I interferon (IFN) gene signature is associated with DADA2 though its association with immune dysregulation is unclear.


Assuntos
Adenosina Desaminase , Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/etiologia , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Feminino , Doenças Hereditárias Autoinflamatórias
4.
J Cancer Res Clin Oncol ; 150(5): 260, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760614

RESUMO

PURPOSE: Neoadjuvant chemotherapy (NCT) is the standard preoperative treatment for resectable locally advanced esophageal squamous cell carcinoma (ESCC). Some studies reported neoadjuvant immunochemotherapy (NICT) could improve pathological response with manageable safety. However, few studies have compared the efficacy and safety of NICT and NCT, especially survival outcomes. In this study, we compared the efficacy and safety of NICT and NCT after a median follow-up of 36.0 months. METHODS: This was a retrospective study with a 1:1 propensity score matching (PSM). Locally advanced ESCC patients treated with neoadjuvant sintilimab plus chemotherapy or chemotherapy followed by esophagectomy were reviewed. The primary outcome was recurrence-free survival (RFS). RESULTS: Forty-five patients were identified in each group by PSM. The pathological complete response (pCR) rate in NICT and NCT group were 28.9% and 8.9% (P = 0.02). The hazard ratio (HR) was 0.396 (95% CI 0.171-0.919, p = 0.025) for RFS and 0.377 (95% CI 0.145-0.981, p = 0.038) for overall survival (OS), 3-year RFS was 80.6% and 62.1%, 3-year OS was 86.2% and 68.1%. Patients with pCR, MPR or downstaging had better 3-year RFS and 3-year OS. The incidences of postoperative complications and treatment-related adverse events (TRAEs) were similar. CONCLUSION: This trial preliminarily shows that NICT improves pathological and survival outcomes over NCT for resectable locally advanced ESCC, with acceptable and manageable safety.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Esofagectomia , Terapia Neoadjuvante , Humanos , Masculino , Terapia Neoadjuvante/métodos , Feminino , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Pessoa de Meia-Idade , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/tratamento farmacológico , Estudos Retrospectivos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Adulto , Imunoterapia/métodos , Taxa de Sobrevida , Resultado do Tratamento
5.
Parasit Vectors ; 17(1): 231, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760668

RESUMO

BACKGROUND: Insect cell lines play a vital role in many aspects of research on disease vectors and agricultural pests. The tsetse fly Glossina morsitans morsitans is an important vector of salivarian trypanosomes in sub-Saharan Africa and, as such, is a major constraint on human health and agricultural development in the region. METHODS: Here, we report establishment and partial characterisation of a cell line, GMA/LULS61, derived from tissues of adult female G. m. morsitans. GMA/LULS61 cells, grown at 28 °C in L-15 (Leibovitz) medium supplemented with foetal bovine serum and tryptose phosphate broth, have been taken through 23 passages to date and can be split 1:1 at 2-week intervals. Karyotyping at passage 17 revealed a predominantly haploid chromosome complement. Species origin and absence of contaminating bacteria were confirmed by PCR amplification and sequencing of fragments of the COI gene and pan-bacterial 16S rRNA gene respectively. However, PCR screening of RNA extracted from GMA/LULS61 cells confirmed presence of the recently described Glossina morsitans morsitans iflavirus and Glossina morsitans morsitans negevirus, but absence of Glossina pallipides salivary gland hypertrophy virus. GMA/LULS61 cells supported infection and growth of 6/7 different insect-derived strains of the intracellular bacterial symbiont Wolbachia. CONCLUSIONS: The GMA/LULS61 cell line has potential for application in a variety of studies investigating the biology of G. m. morsitans and its associated pathogenic and symbiotic microorganisms.


Assuntos
Moscas Tsé-Tsé , Moscas Tsé-Tsé/parasitologia , Animais , Linhagem Celular , Feminino , RNA Ribossômico 16S/genética , Cariotipagem , Insetos Vetores/virologia
6.
BMC Genomics ; 25(1): 489, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760729

RESUMO

BACKGROUND: The cellular origin of hypopharyngeal diseases is crucial for further diagnosis and treatment, and the microenvironment in tissues may also be associated with specific cell types at the same time. Normal adjacent tissues (NATs) of hypopharyngeal carcinoma differ from non-tumor-bearing tissues, and can influenced by the tumor. However, the heterogeneity in kinds of disease samples remains little known, and the transcriptomic profile about biological information associated with disease occurrence and clinical outcome contained in it has yet to be fully evaluated. For these reasons, we should quickly investigate the taxonomic and transcriptomic information of NATs in human hypopharynx. RESULTS: Single-cell suspensions of normal adjacent tissues (NATs) of hypopharyngeal carcinoma were obtained and single-cell RNA sequencing (scRNA-seq) was performed. We present scRNA-seq data from 39,315 high-quality cells in the hypopharyngeal from five human donors, nine clusters of normal adjacent human hypopharyngeal cells were presented, including epithelial cells, endothelial cells (ECs), mononuclear phagocyte system cells (MPs), fibroblasts, T cells, plasma cells, B cells, mural cells and mast cells. Nonimmune components in the microenvironment, including epithelial cells, endothelial cells, fibroblasts and the subpopulations of them were performed. CONCLUSIONS: Our data provide a solid basis for the study of single-cell landscape in human normal adjacent hypopharyngeal tissues biology and related diseases.


Assuntos
Neoplasias Hipofaríngeas , Análise de Célula Única , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/patologia , Microambiente Tumoral/genética , Hipofaringe/patologia , Hipofaringe/metabolismo , Perfilação da Expressão Gênica , Masculino , Análise de Sequência de RNA
7.
Exp Hematol Oncol ; 13(1): 53, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760788

RESUMO

Increasing evidence supports a role for small extracellular vesicles (sEV, including exosomes) in Diffuse Large B-cell lymphoma (DLBCL) progression and resistance to treatment. CD20 and PD-L1 are found on DLBCL-derived sEV, but little is known about their patient-level heterogeneity. Moreover, the capacity of PD-L1+ sEV to modulate T cells needs to be clarified. Herein we analyzed sEV produced by human DLBCL cell lines and EBV-transformed B cell-lymphoblastoid cell lines (LCLs), a model allowing autologous T cell co-cultures. We determined CD20 and PD-L1 levels on plasma sEV from patient samples vs healthy volunteers (HV). sEV functional relevance was also investigated on CD4+ and CD8+ T cells. sEV derived from all cell lines showed an enrichment of CD20 and a high glycosylated PD-L1 expression when compared to cell lysates. High PD-L1 expression on LCL-derived sEV was associated with higher CD4+ and CD8+ T cell apoptosis. In patients, plasma sEV concentration was higher vs HV. Compared to sEV-CD20 level that seemed higher in patients, PD-L1 level in sEV was not different from those of HV. A high glycosylated PD-L1 level was shown in sEV from both patients and HV plasma samples, that was associated with the same inhibiting effect on activated T cells. We conclude that sEV derived from EBV-transformed B cells realize an immunosuppressive role that involved cell-cell interaction and probably at least PD-L1. Furthermore, our findings suggest the potential of circulating sEV as a source of biomarkers in DLBCL, notably to have information on immunotherapeutic target levels of parental tumor cells.

8.
Biol Res ; 57(1): 30, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760850

RESUMO

BACKGROUND: Mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2), are present in most gliomas. IDH1 mutation is an important prognostic marker in glioma. However, its regulatory mechanism in glioma remains incompletely understood. RESULTS: miR-182-5p expression was increased within IDH1-mutant glioma specimens according to TCGA, CGGA, and online dataset GSE119740, as well as collected clinical samples. (R)-2-hydroxyglutarate ((R)-2HG) treatment up-regulated the expression of miR-182-5p, enhanced glioma cell proliferation, and suppressed apoptosis; miR-182-5p inhibition partially eliminated the oncogenic effects of R-2HG upon glioma cells. By direct binding to Cyclin Dependent Kinase Inhibitor 2 C (CDKN2C) 3'UTR, miR-182-5p inhibited CDKN2C expression. Regarding cellular functions, CDKN2C knockdown promoted R-2HG-treated glioma cell viability, suppressed apoptosis, and relieved cell cycle arrest. Furthermore, CDKN2C knockdown partially attenuated the effects of miR-182-5p inhibition on cell phenotypes. Moreover, CDKN2C knockdown exerted opposite effects on cell cycle check point and apoptosis markers to those of miR-182-5p inhibition; also, CDKN2C knockdown partially attenuated the functions of miR-182-5p inhibition in cell cycle check point and apoptosis markers. The engineered CS-NPs (antagomir-182-5p) effectively encapsulated and delivered antagomir-182-5p, enhancing anti-tumor efficacy in vivo, indicating the therapeutic potential of CS-NPs(antagomir-182-5p) in targeting the miR-182-5p/CDKN2C axis against R-2HG-driven oncogenesis in mice models. CONCLUSIONS: These insights highlight the potential of CS-NPs(antagomir-182-5p) to target the miR-182-5p/CDKN2C axis, offering a promising therapeutic avenue against R-2HG's oncogenic influence to glioma.


Assuntos
Ciclo Celular , Glioma , Glutaratos , Isocitrato Desidrogenase , MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Ciclo Celular/genética , Glutaratos/metabolismo , Mutação , Apoptose/genética , Proliferação de Células/genética , Animais , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Camundongos Nus
9.
Plant Methods ; 20(1): 72, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760854

RESUMO

BACKGROUND: Single-cell analysis, a rapidly evolving field, encounters significant challenges in detecting individual cells within complex plant tissues, particularly oil cells (OCs). The intricate process of single-cell isolation, coupled with the inherent chemical volatility of oil cells, necessitates a comprehensive methodology. RESULTS: This study presents a method for obtaining intact OC from Asari Radix et Rhizoma (ARR), a traditional herbal medicine. The developed approach facilitates both qualitative and quantitative analysis of diverse OCs. To determine the most reliable approach, four practical methods-laser capture microdissection, micromanipulation capturing, micromanipulation piping, and cell picking-were systematically compared and evaluated, unequivocally establishing cell picking as the most effective method for OC isolation and chemical analysis. Microscopic observations showed that OCs predominantly distribute in the cortex of adventitious and fibrous roots, as well as the pith and cortex of the rhizome, with distinct morphologies-oblong in roots and circular in rhizomes. Sixty-three volatile constituents were identified in OCs, with eighteen compounds exhibiting significant differences. Safrole, methyleugenol, and asaricin emerged as the most abundant constituents in OCs. Notably, cis-4-thujanol and tetramethylpyrazine were exclusive to rhizome OCs, while isoeugenol methyl ether was specific to fibrous root OCs based on the detections. ARR roots and rhizomes displayed marked disparities in OC distribution, morphology, and constituents. CONCLUSION: The study highlights the efficacy of cell picking coupled with HS-SPME-GC-MS as a flexible, reliable, and sensitive method for OC isolation and chemical analysis, providing a robust methodology for future endeavors in single-cell analyses.

10.
Exp Hematol Oncol ; 13(1): 52, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760861

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1ß and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1ß signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.

11.
J Cell Mol Med ; 28(10): e18378, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760895

RESUMO

The efficacy of radiotherapy, a cornerstone in the treatment of lung adenocarcinoma (LUAD), is profoundly undermined by radiotolerance. This resistance not only poses a significant clinical challenge but also compromises patient survival rates. Therefore, it is important to explore this mechanism for the treatment of LUAD. Multiple public databases were used for single-cell RNA sequencing (scRNA-seq) data. We filtered, normalized and downscaled scRNA-seq data based on the Seurat package to obtain different cell subpopulations. Subsequently, the ssGSEA algorithm was used to assess the enrichment scores of the different cell subpopulations, and thus screen the cell subpopulations that are most relevant to radiotherapy tolerance based on the Pearson method. Finally, pseudotime analysis was performed, and a preliminary exploration of gene mutations in different cell subpopulations was performed. We identified HIST1H1D+ A549 and PIF1+ A549 as the cell subpopulations related to radiotolerance. The expression levels of cell cycle-related genes and pathway enrichment scores of these two cell subpopulations increased gradually with the extension of radiation treatment time. Finally, we found that the proportion of TP53 mutations in patients who had received radiotherapy was significantly higher than that in patients who had not received radiotherapy. We identified two cellular subpopulations associated with radiotherapy tolerance, which may shed light on the molecular mechanisms of radiotherapy tolerance in LUAD and provide new clinical perspectives.


Assuntos
Adenocarcinoma de Pulmão , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , Mutação , Tolerância a Radiação , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/radioterapia , Adenocarcinoma de Pulmão/patologia , Tolerância a Radiação/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Análise de Sequência de RNA/métodos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Perfilação da Expressão Gênica , Linhagem Celular Tumoral
12.
Cell Rep ; 43(5): 114250, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762882

RESUMO

Acute stroke triggers extensive changes to myeloid immune cell populations in the brain that may be targets for limiting brain damage and enhancing repair. Immunomodulatory approaches will be most effective with precise manipulation of discrete myeloid cell phenotypes in time and space. Here, we investigate how stroke alters mononuclear myeloid cell composition and phenotypes at single-cell resolution and key spatial patterns. Our results show that multiple reactive microglial states and monocyte-derived populations contribute to an extensive myeloid cell repertoire in post-stroke brains. We identify important overlaps and distinctions among different cell types/states that involve ontogeny- and spatial-related properties. Notably, brain connectivity with infarcted tissue underpins the pattern of local and remote altered cell accumulation and reactivity. Our discoveries suggest a global but anatomically governed brain myeloid cell response to stroke that comprises diverse phenotypes arising through intrinsic cell ontogeny factors interacting with exposure to spatially organized brain damage and neuro-axonal cues.

13.
STAR Protoc ; 5(2): 103068, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762884

RESUMO

S-acylation, commonly palmitoylation, is the addition of fatty acids to cysteines to regulate protein localization and function. S-acylation detection has been hampered by limited sensitivity and selectivity in low-protein, costly samples like cultured neurons. Here, we present a protocol for sensitive and selective bioorthogonal labeling and click-chemistry-based detection of S-acylated proteins in primary hippocampal neurons. We describe steps for metabolically labeling neurons with alkynyl fatty acid, click chemistry, NeutrAvidin-based capture, and elution with hydroxylamine.

14.
J Pharm Pharmacol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762907

RESUMO

OBJECTIVES: Milk thistle has long been used in the treatment of liver and biliary disorders. In the present study, to make a long-acting delivery system for silibinin (SBN, a major active constituent of milk thistle seeds with antioxidant and hepatoprotective function), mesoporous silica composite nanoparticles (NC) were synthesized and coated with RBC membrane. METHODS: A modified Stöber method was used for NC synthesis, which was then characterized using FE-SEM, DLS, TEM, FTIR, and EDAX techniques. A suitable lysis buffer was used to prepare RBC-ghost, and sonication was used to coat SBN-loaded NC (SBN-NC). The RBC-ghost coated SBN-NC (SBN-NC-RBCG) was evaluated by SDS-PAGE, Bradford, TEM, EDAX, and DLS methods. SBN release was then compared for the SBN-NC and SBN-NC-RBCG samples. KEY FINDINGS: the RBC membrane proteins were recovered from the coating of SBN-NC-RBCG, and SBN release was sustained over 24 h when compared with the SBN-NC. CONCLUSIONS: Overall, through prolonging circulation in the bloodstream and evading the immune system, the developed system can improve SBN bioavailability in liver inflammation and fibrosis conditions that need further research.

15.
Biochem Biophys Res Commun ; 721: 150108, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38762931

RESUMO

Drug-tolerant persister (DTP) cells remain following chemotherapy and can cause cancer relapse. However, it is unclear when acquired resistance to chemotherapy emerges. Here, we compared the gene expression profiles of gastric cancer patient-derived cells (GC PDCs) and their respective xenograft tumors with different sensitivities to 5-fluorouracil (5-FU) by using immunodeficient female BALB/c-nu mice. RNA sequencing analysis of 5-FU-treated PDCs demonstrated that DNA replication/cell cycle-related genes were transiently induced in the earlier phase of DTP cell emergence, while extracellular matrix (ECM)-related genes were sustainably upregulated during long-term cell survival in 5-FU-resistant residual tumors. NicheNet analysis, which uncovers cell-cell signal interactions, indicated the transforming growth factor-ß (TGF-ß) pathway as the upstream regulator in response to 5-FU treatment. This induced ECM-related gene expression in the 5-FU-resistant tumor model. In the 5-FU-resistant residual tumors, there was a marked upregulation of cancer cell-derived TGF-ß1 expression and increased phosphorylation of SMAD3, a downstream regulator of the TGF-ß receptor. By contrast, these responses were not observed in a 5-FU-sensitive tumor model. We further found that TGF-ß-related upregulation of ECM genes was preferentially observed in non-responders to chemotherapy with 5-FU and/or oxaliplatin among 22 patient-derived xenograft tumors. These observations suggest that chemotherapy-induced activation of the TGF-ß1/SMAD3/ECM-related gene axis is a potential biomarker for the emergence of drug resistance in GCs.

16.
Ultramicroscopy ; 263: 113986, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38762964

RESUMO

Nucleolin is overexpressed on the surface of pancreatic cancer cells and are regarded as the remarkable therapeutic target. Aptamers are capable of binding the external domain of nucleolin on the cell surface with high affinity and specificity. But nucleolin has not been localized on pancreatic cancer cells at very high spatial resolution, and the interactions between nucleolin and aptamers have not been investigated at very high force resolution level. In this work, nucleolin was localized on pancreatic cancer and normal cells by aptamers (9FU-AS1411-NH2, AS1411-NH2 and CRONH2) in Single Molecule Recognition Imaging mode of Atomic Force Microscopy. There are plenty of nucleolin on the surfaces of pancreatic cancer cells (area percentage about 5 %), while there are little nucleolin on the surfaces of normal cells. The interactions between three types of aptamers and nucleolins on the surfaces of pancreatic cancer cells were investigated by Single Molecule Force Spectroscopy. The unbinding forces of nucleolins-(9FU-AS1411-NH2) are larger than nucleolins-(AS1411-NH2). The dissociation activation energy on nucleolin-(9FU-AS1411-NH2) is higher than nucleolin-(AS1411-NH2), which indicates that the former complex is more stable and harder to dissociate than the later complex. There are no unbinding forces between nucleolin and CRONH2. All these demonstrate that nucleolin was localized on pancreatic cancer and normal cells at single molecule level quantitatively, and the interactions (unbinding forces and kinetics) between nucleolin and aptamers were studied at picoNewton level. The approaches and results of this work will pave new ways in the investigations of nucleolin and aptamers, and will also be useful in the studies on other proteins and their corresponding aptamers.

17.
Phytomedicine ; 130: 155746, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763012

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a category of breast cancer characterized with high molecular heterogeneity. Owing to the lack of effective therapeutic strategies, patients with TNBC have a poor prognosis. Paris saponin VII (PSⅦ), a steroidal saponin extracted from the rhizome of Trichillium tschonoskii Maxim, exhibits excellent anti-cancer activity in a variety of solid tumors. However, the role and potential mechanism of PSⅦ against TNBC remain unexplored. PURPOSE: This study aimed to elucidate the therapeutic effects of PSⅦ against TNBC and explore the potential mechanism of action. METHODS: We combined the analysis of public single-cell sequencing data with weighted gene co-expression network analysis (WGCNA) to identity differentially expressed genes (DEGs) that distinguished malignant and normal epithelial cells in TNBC. Subsequently, the biological features of DEGs in TNBC were evaluated. Gene set enrichment analysis (GSEA) was used to define potential pathways associated with the DEGs. The pharmacological activity of PSⅦ for TNBC was evidenced via in vitro and in vivo experiments, and molecular docking, molecular dynamics (MD), surface plasmon resonance (SPR) assay and western blotting were employed to confirm the relative mechanisms. RESULTS: Single-cell sequencing and WGCNA revealed STMN1 as a pivotal biomarker of TNBC. STMN1 overexpression in TNBC was associated with poor patient prognosis. GSEA revealed a significant accumulation of STMN1 within the MAPK signaling pathway. Furthermore, In vitro experiments showed that PSⅦ showed significantly suppressive actions on the proliferation, migration and invasion abilities for TNBC cells, while inducing apoptosis. Molecular docking, MD analysis and SPR assay indicated a robust interaction between PSⅦ and the MEK protein. Western blotting revealed that PSⅦ may inhibit tumor progression by suppressing the phosphorylation of MEK1/2 and the downstream phosphorylation of ERK1/2 and STMN1. Intraperitoneal injection of PSⅦ (10 mg/kg) notably reduced tumor growth by 71.26 % in a 4T1 xenograft model. CONCLUSION: In our study, the systems biology method was used to identify potential therapeutic targets for TNBC. In vitro and in vivo experiments demonstrated PSⅦ suppresses cancer progression by targeting the MEK/ERK/STMN1 signaling axis. For the first time, the inhibition of STMN1 phosphorylation has been indicated as a possible mechanism for the anticancer effects of PSⅦ. These results emphasize the potential value of PSⅦ as a promising anti-cancer drug candidate for further development in the field of TNBC therapeutics.

18.
Phytomedicine ; 130: 155696, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38763007

RESUMO

BACKGROUND: Abdominal aortic aneurysm (AAA) is a life-threatening aortic disease, and to date, there are currently no effective pharmacological treatments to address this condition. Activation of cytosolic DNA sensing adaptor stimulator of interferon genes (STING) signaling is a crucial mechanism in AAA formation. PURPOSE: This study investigated pterostilbene (Pt), a naturally occurring polyphenol and resveratrol analogue, as a STING inhibitor for preventing AAA. METHODS: We evaluated the effect of Pt on AAA formation in angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mice. We used histological analysis, MMP activity measurement, western blot, and immunohistochemistry to detect AAA formation and development. We applied RNA sequencing, molecular docking, cellular thermal shift assay (CETSA) and functional studies to dissect the molecular mechanism of Pt-regulating KEAP1-Nrf2-STING signaling. We conditionally knocked down Nrf2 in vascular smooth muscle cells (VSMCs) in vivo to investigate its role in Pt-mediated protective effects on AAA. RESULTS: Pt effectively blocked the formation of AAA in AngII-infused ApoE-/- mice. Whole transcriptome sequencing analysis revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) and STING pathway in VSMCs were linked to the anti-AAA effects of pterostilbene. Mechanistically, Pt upregulated Nrf2 target genes (e.g., HO-1 and NQO1) through activation of the KEAP1/Nrf2 signaling, which restricted the immunostimulatory axis of mtDNA-STING-TBK1-NF-κB, thereby alleviating VSMC inflammation and preserving the VSMC contractile phenotype. Subsequently, molecular docking and CETSA revealed a binding mode between Pt and KEAP1/Nrf2. Intriguingly, the inhibitory effect of Pt on STING signaling and the protective role of Pt in AAA were largely abrogated by VSMC-specific Nrf2 knockdown in mice. CONCLUSION: Collectively, naturally derived Pt shows promising efficacy for the treatment of AAA by targeting the KEAP1-Nrf2-STING axis in VSMCs.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124426, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38763020

RESUMO

Renal cell carcinoma (RCC) is the most common malignant tumor in the urinary system, accounting for 80 % to 90 % for all renal malignancies. Traditional diagnostic methods like magnetic resonance imaging (MRI) and computed tomography (CT) lack the sensitivity and specificity as they lack specific biomarkers. These limitations impede effective monitoring of tumor recurrence. This study aims to employ Attenuated Total Reflection (ATR)-Fourier transform infrared (FTIR) spectroscopy, an optical technology sensitive to molecular groups, to analyze the potential optical biomarkers in urine and plasma samples from RCC patients pre- and post-surgery. The results reveal distinctive spectral information from both plasma and urine samples. Post-surgery urine spectra exhibit complexity compared to plasma, showing reduced content at 1072 cm-1, 1347 cm-1 and 1654 cm-1 bands, while increased content at 1112 cm-1, 1143 cm-1, 1447 cm-1, 3334 cm-1 and 3420 cm-1 bands. Utilizing machine learning models such as eXtreme Gradient Boosting (XGBoost), support vector machine (SVM), partial least squares (PLS), and artificial neural network (ANN), the study evaluated plasma and urine samples pre- and post-surgery. Remarkably, the XGBoost method excelled in distinguishing between tumor conditions and recovery, achieving an impressive AUC value of 0.99. These results underscore the potential of ATR-FTIR technology in identifying RCC optical biomarkers, with XGBoost showing promise as a valuable screening tool for RCC recurrence diagnosis.

20.
Stem Cell Res ; 78: 103443, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38763038

RESUMO

Long QT Syndrome (LQTS) is a genetic heart disorder that can induce cardiac arrhythmias. The most prevalent subtype, LQT1, stems from rare variants in the KCNQ1 gene. Utilizing induced pluripotent stem cells (iPSCs) enables detailed cellular studies and personalized medicine approaches for this life-threatening condition. We generated two LQT1 iPSC lines with single nucleotide nonsense mutations, c.1031 C > T and c.1121 T > A in KCNQ1. Both lines exhibited typical iPSC morphology, expressed high levels of pluripotent markers, maintained normal karyotype, and possessed the capability to differentiate into three germ layers. These cell lines serve as important tools for investigating the biological mechanisms underlying LQT1 due to mutations in the KCNQ1 gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA