Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 402: 130788, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38703960

RESUMO

The purpose of this study was to investigate an environmentally friendly and recyclable pretreatment approach that would enhance the enzymatic digestibility of wheat straw. Wheat straw was pretreated using self-produced crude lactic acid obtained from enzymatic hydrolysate fermentation by Bacillus coagulans. Experimentally, crude lactic acid at low concentration could achieve a pretreatment effect comparable to that of commercial lactic acid. After pretreatment at 180 °C for 60 min with 2.0 % crude lactic acid, hemicellulose could be effectively separated and high recovery of cellulose was ensured, achieving cellulose recovery rate of 95.5 % and hemicellulose removal rate of 92.7 %. Excellent enzymatic hydrolysis was accomplished with a glucose yield of 99.7 %. Moreover, the crude lactic acid demonstrated acceptable pretreatment and enzymatic hydrolysis performance even after three repeated cycles. This not only effectively utilizes the pretreatment solution, but also offers insights into biomass pretreatment using other fermentable acids.


Assuntos
Fermentação , Ácido Láctico , Triticum , Triticum/química , Hidrólise , Ácido Láctico/metabolismo , Celulose/química , Biomassa , Resíduos , Polissacarídeos/química , Celulase/metabolismo , Biotecnologia/métodos , Bacillus/metabolismo , Glucose/metabolismo
2.
Int J Biol Macromol ; 262(Pt 2): 130137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354940

RESUMO

Crop straws provide enormous biomass residues applicable for biofuel production and trace metal phytoremediation. However, as lignocellulose recalcitrance determines a costly process with potential secondary waste liberation, genetic modification of plant cell walls is deemed as a promising solution. Although pectin methylation plays an important role for plant cell wall construction and integrity, little is known about its regulation roles on lignocellulose hydrolysis and trace metal elimination. In this study, we initially performed a typical CRISPR/Cas9 gene-editing for site mutations of OsPME31, OsPME34 and OsPME79 in rice, and then determined significantly upgraded pectin methylation degrees in the young seedlings of three distinct site-mutants compared to their wild type. We then examined distinctively improved lignocellulose recalcitrance in three mutants including reduced cellulose levels, crystallinity and polymerization or raised hemicellulose deposition and cellulose accessibility, which led to specifically enlarged biomass porosity either for consistently enhanced biomass enzymatic saccharification under mild alkali pretreatments or for cadmium (Cd) accumulation up to 2.4-fold. Therefore, this study proposed a novel model to elucidate how pectin methylation could play a unique enhancement role for both lignocellulose enzymatic hydrolysis and Cd phytoremediation, providing insights into precise pectin modification for effective biomass utilization and efficient trace metal exclusion.


Assuntos
Oryza , Oryza/metabolismo , Pectinas/metabolismo , Cádmio/metabolismo , Biomassa , Biodegradação Ambiental , Lignina/metabolismo , Celulose/metabolismo , Metilação
3.
Biotechnol Lett ; 46(2): 183-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252364

RESUMO

Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.


Assuntos
Lignina , Saccharum , Lignina/química , Celulose/química , Biomassa , Biocombustíveis , Hidrólise
4.
Bioresour Technol ; 393: 130056, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37993070

RESUMO

In this study, a combined pretreatment involving autohydrolysis and p-toluenesulfonic acid (p-TsOH) was performed on poplar to coproduce xylooligosaccharides (XOSs) and monosaccharides. The autohydrolysis (180 °C, 30 min) yielded 53.2 % XOS and enhanced the delignification efficiency in the subsequent p-TsOH treatment. Furthermore, considerably high glucan contents (64.1 %∼83.1 %) were achieved in the combined pretreated substrates. However, their enzymatic digestibilities were found to be extremely poor (9.6 %∼14.2 %), which were even lower than the single p-TsOH pretreated substrates (10.2 %∼35.8 %). The underlying reasons were revealed by systematically investigating the effects of the single and combined pretreatment strategies on substrate properties. Moreover, the Tween 80 addition successfully reversed the adverse effects of combined pretreatment on the enzymatic hydrolysis, achieving a high glucose yield of 99.3 % at an enzyme loading of 10 filter paper units/g (FPU/g) glucan. These results deepen the understanding of the synergy of combined pretreatment on biomass fractionation and enzymatic saccharification.


Assuntos
Benzenossulfonatos , Lignina , Populus , Lignina/química , Polissorbatos , Hidrólise , Glucanos , Populus/química
5.
Int J Biol Macromol ; 253(Pt 7): 127356, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838137

RESUMO

Sugar-beet pulp (SBP) is an abundant, cellulose-rich, non-food by-product of agriculture. Oxidised SBP (oP) has valuable viscosity attributes, and different oxidation protocols yield higher- or lower-viscosity oP. We investigated how SBP polysaccharides change during oxidation, since these changes must define oP quality. Oxidation solubilised much pectin and hemicellulose; however, most cellulose stayed insoluble. Fresh SBP contains negligible 'hemicellulose a' (=alkali-extractable polysaccharides that precipitate upon acidification), but oxidation created abundant glucose-rich 'hemicellulose a' from SBP cellulose. We propose that the cellulose acquired COOH groups, conferring alkali-extractability and admitting more water, thereby augmenting viscosity. The pectin and hemicellulose molecules that were retained during oxidation had been partially depolymerised, and their median Mr correlated negatively with oP viscosity. We developed a novel procedure to explore cellulose's permeability by measuring the ingress of tritium from [3H]water into microfibrils and its retention during desiccation. In high-crystallinity Avicel, 75 % of the cellulose's OH groups were inaccessible to [3H]water, whereas filter-paper cellulose acquired the theoretical maximum 3H, indicating an open structure. Retention of 3H by oP preparations correlated positively with viscosity, indicating that increased cellulose accessibility generates a viscous oP. In conclusion, depolymerisation and solubilisation of matrix polysaccharides, accompanied by increasing water-accessibility of cellulose, enhanced SBP's viscosity.


Assuntos
Beta vulgaris , Celulose , Celulose/química , Beta vulgaris/química , Viscosidade , Polissacarídeos/química , Pectinas/química , Glucose , Água
6.
Bioresour Technol ; 388: 129727, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683707

RESUMO

Hydrothermal treatment was applied to pretreat rape straw for the efficient co-production of reducing sugars and xylooligosaccharides. It was observed that hydrothermal treatment using water as solvent and catalyst destructed the compact structure of rape straw and increased its enzymatic digestion efficiency from 24.6% to 92.0%. Xylooligosaccharide (3.3 g/L) was acquired after the treatment under 200 °C for 60 min (severity factor Log Ro = 4.7). With increasing pretreatment intensity from 3.1 to 5.4, the hemicellulose removal increased from 14.4% to 100%, and the delignification was raised from 12% to 44%. Various characterization proved that the surface morphology of treated material showed a porous shape, while the cellulose accessibility, lignin surface area and lignin hydrophobicity were greatly improved. Consequently, hydrothermal pretreatment played a vital role in the sustainable transformation of biomass to valuable biobased compounds, and had a wide range of application prospects in lignocellulosic biorefining.


Assuntos
Brassica rapa , Lignina , Lignina/química , Açúcares , Hidrólise , Celulose/química , Biomassa
7.
Bioresour Technol ; 371: 128647, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36681353

RESUMO

Enzyme-mediated hydrolysis of cellulose always starts with an initial rapid phase, which gradually slows down, sometimes resulting in incomplete cellulose hydrolysis even after prolonged incubation. Although mechanisms such as end-product inhibition are known to play a role, the predominant mechanism appears to be reduced cellulose accessibility to the enzymes. When using Simon's stain to quantify accessibility, the accessibility of mechanically disintegrated and phosphoric acid-swollen cellulose substrates decreased as hydrolysis proceeded. In contrast, the poor initial accessibility of Avicel remained low throughout hydrolysis. However, washing the residual cellulose increased cellulose accessibility, likely due to the removal of tightly bound but non-productive enzymes which blocked access to more active enzymes in solution. Atomic force microscopy (AFM) analysis of the initial and residual cellulose collected when the hydrolysis plateaued, showed an increase in the roughness of the cellulose surface, possibly resulting in the tighter binding of less active cellulases.


Assuntos
Celulase , Celulases , Celulose/metabolismo , Celulase/metabolismo , Hidrólise , Celulases/metabolismo , Corantes
8.
Bioresour Technol ; 362: 127825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36031133

RESUMO

In this study, lignin blockers including non-catalytic protein and surfactants were employed to promote enzymatic digestibility of pretreated poplars. Among them, Tween 80 exhibited the most pronounced facilitation, improving the glucose yield from 26.6% to 99.6% at a low enzyme loading (10 FPU/g glucan), and readily reduced the required cellulase loading by 75%. The underlying mechanism for this remarkable improvement on glucose yields by Tween 80 was elucidated. The impacts of Tween 80 on the enzyme-lignin interaction were explored by quartz crystal microbalance analysis, revealing that the binding rate of Tween 80 on lignin surfaces was 3-fold higher than that of enzyme. More importantly, Tween 80 remarkably decreased the binding capacity and binding rate of enzyme on lignins. Furthermore, the substrate properties dominating the increase in glucose yields with Tween 80 were explored. The results facilitate to understand the underlying mechanism of the promotion of surfactants on enzymatic hydrolysis.


Assuntos
Celulase , Lignina , Celulase/metabolismo , Solventes Eutéticos Profundos , Glucose , Hidrólise , Lignina/química , Polissorbatos , Solventes , Tensoativos/química
9.
Bioresour Technol ; 358: 127321, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35609748

RESUMO

Bamboo pretreatment with alkaline deacetylation-aided hydrogen peroxide-acetic acid (HPAC-NaOH) was investigated for producing high-value-added products. Comparing with HPAC pretreated D. sinicus, the post-treatment of alkaline deacetylation resulted in higher glucose yield of 91.3% and ethanol concentrations of 17.20 g/L, increased by about 20-27%. A strong negative correlation between the content of acetyl with cellulose accessibility and enzymatic hydrolysis yield was showed. The deacetylation of HPAC-DS contributed to the increase of cellulase adsorption capacities in substrates and the variations of hydrophilicity, cellulose crystallinity, and degree of polymerization, which can generate highly reactive cellulosic materials for enzymatic saccharification to produce bioethanol. The HPAC-NaOH pretreatment can provide a promising approach to improve the bioconversion of bamboo to biofuels, and has broad space for the biorefinery of bamboo in the south of China.


Assuntos
Ácido Acético , Celulase , Celulase/química , Celulose/química , Peróxido de Hidrogênio , Hidrólise , Lignina/química , Hidróxido de Sódio
10.
Carbohydr Polym ; 284: 119180, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287900

RESUMO

The development of sustainable and effective pretreatment methods to improve the accessibility of cellulose is of vital importance for its utilization. Herein, a novel high-efficiency pretreatment method based on lithium bromide trihydrate (LBTH) was established, which realized the fast improvement of cellulose accessibility under ambient conditions without dissolution of cellulose. The cellulose I structure of microcrystalline cellulose (MCC) was transformed into amorphous structure just within 5 min of LBTH pretreatment, and the crystallinity was reduced from 79.1 to 19.9%. After pretreatment for 30 min, the BET surface area of MCC increased from 2.1 to 125.9 m2/g. Particularly, the pretreated cellulose could be near-completely saccharified to glucose (98.3%) with ultra-low enzyme dosage (2.5 mg protein/g-glucan) just within 24 h, while the conversion of untreated MCC under the same conditions was only 16.7%. Additionally, this non-dissolving pretreatment is beneficial to the separation and recycling of LBTH, guaranteeing a clean and sustainable process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA