Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.497
Filtrar
1.
ACS Appl Bio Mater ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093691

RESUMO

Currently the prevalence of diabetic wounds brings a huge encumbrance onto patients, causing high disability and mortality rates and a major medical challenge for society. Therefore, in this study, we are targeting to fabricate aloe vera extract infused biocompatible nanofibrous patches to facilitate the process of diabetic wound healing. Additionally, clindamycin has been adsorbed onto the surface of in-house synthesized ceria nanoparticles and again used separately to design a nanofibrous web, as nanoceria can act as a good drug delivery vehicle and exhibit both antimicrobial and antidiabetic properties. Various physicochemical characteristics such as morphology, porosity, and chemical composition of the produced nanofibrous webs were investigated. Bacterial growth inhibition and antibiofilm studies of the nanofibrous materials confirm its antibacterial and antibiofilm efficacy against Gram-positive and Gram-negative bacteria. An in vitro drug release study confirmed that the nanofibrous mat show a sustained drug release pattern (90% of drug in 96 h). The nanofibrous web containing drug loaded nanoceria not only showed superior in vitro performance but also promoted greater wound contraction (95 ± 2%) in diabetes-induced mice in just 7 days. Consequently, it efficaciously lowers the serum glucose level, inflammatory cytokines, oxidative stress, and hepatotoxicity markers as endorsed by various ex vivo tests. Conclusively, this in-house-fabricated biocompatible nanofibrous patch can act as a potential medicated suppository that can be used for treating diabetic wounds in the proximate future.

2.
J Appl Crystallogr ; 57(Pt 4): 1229-1234, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39108809

RESUMO

This article presents a Python-based program, DFT2FEFFIT, to regress theoretical extended X-ray absorption fine structure (EXAFS) spectra calculated from density functional theory structure models against experimental EXAFS spectra. To showcase its application, Ce-doped fluorapatite [Ca10(PO4)6F2] is revisited as a representative of a material difficult to analyze by conventional multi-shell least-squares fitting of EXAFS spectra. The software is open source and publicly available.

3.
Sci Rep ; 14(1): 18014, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097612

RESUMO

Cerium oxide nanoparticles are known for their antibacterial effects resulting from Ce3+ to Ce4+ conversion. Application of such cerium oxide nanoparticles in dentistry has been previously considered but limited due to deterioration of mechanical properties. Hence, this study aimed to examine mesoporous silica (MCM-41) coated with cerium oxide nanoparticles and evaluate the antibacterial effects and mechanical properties when applied to dental composite resin. Cerium oxide nanoparticles were coated on the MCM-41 surface using the sol-gel method by adding cerium oxide nanoparticle precursor to the MCM-41 dispersion. The samples were tested for antibacterial activity against Streptococcus mutans via CFU and MTT assays. The mechanical properties were assessed by flexural strength and depth of cure according to ISO 4049. Data were analyzed using a t-test, one-way ANOVA, and Tukey's post-hoc test (p = 0.05). The experimental group showed significantly increased antibacterial properties compared to the control groups (p < 0.005). The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite.


Assuntos
Antibacterianos , Cério , Resinas Compostas , Nanopartículas , Dióxido de Silício , Streptococcus mutans , Cério/química , Cério/farmacologia , Dióxido de Silício/química , Antibacterianos/farmacologia , Antibacterianos/química , Resinas Compostas/química , Resinas Compostas/farmacologia , Streptococcus mutans/efeitos dos fármacos , Nanopartículas/química , Resinas Acrílicas/química , Teste de Materiais , Poliuretanos/química , Poliuretanos/farmacologia , Resistência à Flexão , Porosidade
4.
J Bioenerg Biomembr ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102102

RESUMO

This study investigated Cerium oxide nanoparticles (CeONPs) effect on central neuropathic pain (CNP). The compressive method of spinal cord injury (SCI) model was used for pain induction. Three groups were formed by a random allocation of 24 rats. In the treatment group, CeONPs were injected above and below the lesion site immediately after inducing SCI. pain symptoms were evaluated using acetone, Radian Heat, and Von Frey tests weekly for six weeks. Finally, we counted fibroblasts using H&E staining. We evaluated the expression of Cx43, GAD65 and HDAC2 proteins using the western blot method. The analysis of results was done by PRISM software. At the end of the study, we found that CeONPs reduced pain symptoms to levels similar to those observed in normal animals. CeONPs also increased the expression of GAD65 and Cx43 proteins but did not affect HDAC2 inhibition. CeONPs probably have a pain-relieving effect on chronic pain by potentially preserving GAD65 and Cx43 protein expression and hindering fibroblast infiltration.

5.
Sci Rep ; 14(1): 15608, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971874

RESUMO

Urea used in fertilization and feed supplement, as well as a starting material for the manufacture of plastics and drugs. Urea is most commonly produced by reacting carbon dioxide with ammonia at high temperature. Photocatalysis has gained attention as a sustainable pathway for performing urea. This work focus on designing very active photocatalysts based on cerium organic framework (Ce-BTC) doped with metal oxide nanoparticles (molybdenum permanganate, Mo(MnO4)5) for production of urea from coupling of ammonia with carbon dioxide. The prepared materials were characterized using different spectral analysis and the morphology was analysed using microscopic data. The effect of catalyst loading on the production rate of urea was investigated and the obtained results showed speed rate of urea production with high production yield at low temperature. The recyclability tests confirmed the sustainability of the prepared photocatlysts (Mo(MnO4)5@Ce-BTC) which supported the beneficial of the photocatalysis process in urea production.

6.
Cell Biochem Funct ; 42(5): e4092, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38978266

RESUMO

Throughout radiotherapy, radiation of the hepatic tissue leads to damage of the hepatocytes. We designed the current study to examine how cerium oxide nanoparticles (CONPs) modulate gamma irradiation-induced hepatotoxicity in rats. Animals received CONPs (15 mg/kg body weight [BW], ip) single daily dose for 14 days, and they were exposed on the seventh day to a single dose of gamma radiation (6 Gy). Results showed that irradiation increased serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities. Furthermore, it elevated oxidative stress biomarker; malondialdehyde (MDA) and inhibited the activities of antioxidant enzymes (superoxide dismutase and glutathione peroxidase) in hepatic tissues homogenate. Additionally, hepatic apoptotic markers; caspase-3 (Casp-3) and Casp-9 were elevated and the B-cell lymphoma-2 (Bcl-2) gene level was decreased in rats exposed to radiation dose. We observed that CONPs can modulate these changes, where CONPs reduced liver enzyme activities, MDA, and apoptotic markers levels, in addition, it elevated antioxidant enzyme activities and Bcl-2 gene levels, as well as improved histopathological changes in the irradiated animals. So our results concluded that CONPs had the ability to act as radioprotector defense against hepatotoxicity resulted during radiotherapy.


Assuntos
Antioxidantes , Apoptose , Cério , Raios gama , Fígado , Nanopartículas , Cério/farmacologia , Cério/química , Animais , Raios gama/efeitos adversos , Apoptose/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos , Masculino , Fígado/efeitos dos fármacos , Fígado/efeitos da radiação , Fígado/metabolismo , Fígado/patologia , Nanopartículas/química , Ratos Wistar , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Alanina Transaminase/metabolismo , Alanina Transaminase/sangue , Malondialdeído/metabolismo , Aspartato Aminotransferases/metabolismo , Aspartato Aminotransferases/sangue , Superóxido Dismutase/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
J Nanobiotechnology ; 22(1): 399, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970101

RESUMO

Spinal cord injury (SCI) represents a profound central nervous system affliction, resulting in irreversibly compromised daily activities and disabilities. SCI involves excessive inflammatory responses, which are characterized by the existence of high levels of proinflammatory M1 macrophages, and neuronal mitochondrial energy deficit, exacerbating secondary damage and impeding axon regeneration. This study delves into the mechanistic intricacies of SCI, offering insights from the perspectives of neuroimmune regulation and mitochondrial function, leading to a pro-fibrotic macrophage phenotype and energy-supplying deficit. To address these challenges, we developed a smart scaffold incorporating enzyme mimicry nanoparticle-ceriumoxide (COPs) into nanofibers (NS@COP), which aims to pioneer a targeted neuroimmune repair strategy, rescuing CGRP receptor on macrophage and concurrently remodeling mitochondrial function. Our findings indicate that the integrated COPs restore the responsiveness of pro-inflammatory macrophages to calcitonin gene-related peptide (CGRP) signal by up-regulating receptor activity modifying protein 1 (RAMP1), a vital component of the CGRP receptor. This promotes macrophage fate commitment to an anti-inflammatory pro-resolution M2 phenotype, then alleviating glial scar formation. In addition, NS@COP implantation also protected neuronal mitochondrial function. Collectively, our results suggest that the strategy of integrating nanozyme COP nanoparticles into a nanofiber scaffold provides a promising therapeutic candidate for spinal cord trauma via rational regulation of neuroimmune communication and mitochondrial function.


Assuntos
Axônios , Macrófagos , Nanofibras , Regeneração Nervosa , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Nanofibras/química , Regeneração Nervosa/efeitos dos fármacos , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ratos , Alicerces Teciduais/química , Nanopartículas/química , Ratos Sprague-Dawley , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Camundongos Endogâmicos C57BL
8.
Chemistry ; : e202402470, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073203

RESUMO

This paper describes the synthesis of a cerium(IV)-based molecular gear composed of a thioether functionalized phthalocyanine anchoring ligand, and a helical naphthalocyanine rotating cogwheel functionalized with four carbazoles. The naphthalocyanine ligand 9 was obtained after eleven steps (overall yield of 0.2%) as a mixture of three geometrical isomers, two of which are chiral and exhibit high levels of steric hindrance, as shown by DFT calculations. Their attributions have been made using 1H-NMR based on their different symmetry groups. The ratio of isomers was also determined and the prochiral C4h naphthalocyanine shown to be the major compound (55%). Its heteroleptic complexation with cerium (IV) and the anchoring phthalocyanine ligand 10 gave the targeted molecular gear in a 16% yield.

9.
Life (Basel) ; 14(7)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39063600

RESUMO

The abiotic formation of nucleotides from small, simple molecules is of large interest in the context of elucidating the origin of life scenario. In what follows, it is shown that nucleosides and nucleotides can be formed from formamide in a one-pot reaction utilizing the mineral cerium phosphate (CePO4) as a photocatalyst, a catalyst and a reactant that supplies the necessary phosphate groups. While the most abundant RNA/DNA building blocks were thymidine and thymidine monophosphate, considerable yields of other building blocks such as cytidine, cytidine monophosphate, and adenosine cyclic monophosphate were found. Comparing the yield of nucleosides and nucleotides under light conditions to that in the dark suggests that in the presence of cerium phosphate, light promotes the formation of nucleobases, whereas the formation of nucleotides from nucleosides take place even in the absence of light. The scenario described herein is considerably simpler than other scenarios involving several steps and several reactants. Therefore, by virtue of the principle of Occam's razor, it should be of large interest for the community.

10.
J Colloid Interface Sci ; 674: 873-883, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38955018

RESUMO

Lithium-sulfur batteries (LSBs) hold promise as the next-generation lithium-ion batteries (LIBs) due to their ultra-high theoretical capacity and remarkable cost-efficiency. However, these batteries suffer from the serious shuttle effect, challenging their practical application. To address this challenge, we have developed a unique interlayer (HCON@CNWF) composed of hollow cerium oxide nanorods (CeO2) anchored to carbonized non-woven viscose fabric (CNWF), utilizing a straightforward template method. The prepared interlayer features a three-dimensional (3D) conductive network that serves as a protective barrier and enhances electron/ion transport. Additionally, the CeO2 component effectively chemisorbs and catalytically transforms lithium polysulfides (LiPSs), offering robust chemisorption and activation sites. Moreover, the unique porous structure of the HCON@CNWF not only physically adsorbs LiPSs but also provides ample space for sulfur's volume expansion, thus mitigating the shuttle effect and safeguarding the electrode against damage. These advantages collectively contribute to the battery's outstanding electrochemical performance, notably in retaining a reversible capacity of 80.82 % (792 ± 5.60 mAh g-1) of the initial value after 200 charge/discharge cycles at 0.5C. In addition, the battery with HCON@CNWF interlayer has excellent electrochemical performance at high sulfur loading (4 mg cm-2) and low liquid/sulfur ratio (7.5 µL mg-1). This study, thus, offers a novel approach to designing advanced interlayers that can enhance the performance of LSBs.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39003249

RESUMO

Cerium oxide nanoparticles (CeO2), as a metal oxide nanomaterial, are increasingly used for various industrial and biomedical applications. Although their cytotoxicity to bacteria and the associated mechanisms have attracted particular attention, the mechanisms behind their antifungal effects have remained unclear. This study investigated the antifungal properties of CeO2, focusing on Aspergillus oryzae. CeO2 inhibited fungal spore germination on solid substrates, and the effect was fungistatic rather than fungicidal. CeO2 inhibited fungal growth, especially under UV irradiation, and induced reactive oxygen species (ROS) production. Tocopherol reduced the intracellular ROS levels and the growth-inhibitory effects of CeO2, suggesting that ROS are involved in these growth-inhibitory effects. Transcriptomic analysis revealed upregulated expression of genes related to phospholipases and phosphate metabolism. CeO2 affected phosphate ion concentration in the medium, potentially influencing cellular responses. This research provided valuable insights into the antifungal effects of CeO2 application, which differ from those of conventional photocatalysts like TiO2.

12.
Toxicol In Vitro ; 100: 105889, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971396

RESUMO

Experimental systems allowing aerosol exposure (AE) of cell cultures at the air-liquid-interface (ALI) are increasingly being used to assess the toxicity of inhaled contaminants as they are more biomimetic than standard methods using submerged cultures, however, they require detailed characterisation before use. An AE-ALI system combining aerosol generation with a CULTEX® exposure chamber was characterised with respect to particle deposition and the cellular effects of filtered air (typical control) exposures. The effect of system parameters (electrostatic precipitator voltage, air flowrate to cells and insert size) on deposition efficiency and spatial distribution were investigated using ICP-MS and laser ablation ICP-MS, for an aerosol of CeO2 nanoparticles. Deposition varied with conditions, but appropriate choice of operating parameters produced broadly uniform deposition at suitable levels. The impact of air exposure duration on alveolar cells (A549) and primary small airway epithelial cells (SAECs) was explored with respect to LDH release and expression of selected genes. Results indicated that air exposures could have a significant impact on cells (e.g., cytotoxicity and expression of genes, including CXCL1, HMOX1, and SPP1) at relatively short durations (from 10 mins) and that SAECs were more sensitive. These findings indicate that detailed system characterisation is essential to ensure meaningful results.

13.
Int J Biol Macromol ; 276(Pt 1): 133702, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38972659

RESUMO

Bacterial cellulose (BC) is a promising natural polymer prized for its biocompatibility, microporosity, transparency, conformability, elasticity, and ability to maintain a moist wound environment while absorbing exudates. These attributes make BC an attractive material in biomedical applications, particularly in skin tissue repair. However, its lack of inherent antimicrobial activity limits its effectiveness. In this study, BC was enhanced by incorporating cerium (IV)-oxide (CeO2) nanoparticles, resulting in a series of bacterial cellulose-CeO2 (BC-CeO2) composite materials. Characterization via FESEM, XRD, and FTIR confirmed the successful synthesis of the composites. Notably, BC-CeO2-1 exhibited no cytotoxic or genotoxic effects on peripheral blood lymphocytes, and it additionally protected cells from genotoxic and cytotoxic effects in H2O2-treated cultures. Redox parameters in blood plasma samples displayed concentration and time-dependent trends in PAB and LPP assays. The incorporation of CeO2 nanoparticles also bolstered antimicrobial activity, expanding the potential biomedical applications of these composites.

14.
ACS Nano ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012788

RESUMO

Chemiresistive gas sensors based on semiconducting metal oxides typically rely on noble metal catalysts to enhance their sensitivity and selectivity. However, noble metal catalysts have several drawbacks for practical utilization, including their high cost, their propensity for spontaneous agglomeration, and poisoning effects with certain types of gases. As such, in the interest of commercializing the chemiresistive gas sensor technology, we propose an alternative design for a noble-metal-free sensing material through the case study of Co-doped ceria (Co-CeO2) catalysts embedded in a SnO2 matrix. In this investigation, we utilized electrospinning and subsequent calcination to prepare Co-CeO2 catalyst nanoparticles integrated with SnO2 nanofibers (NFs) with uniform particle distribution and particle size regulation down to the sub-2 nm regime. The resulting Co-CeO2@SnO2 NFs exhibited superior gas sensing characteristics toward isoprene (C5H8) gas, a significant biomarker for monitoring the onset of various diseases through breath diagnostics. In particular, we identified that the Co-CeO2 catalysts, owing to the transition metal doping, facilitated the spillover of chemisorbed oxygen species to the SnO2 sensing body. This resulting in the sensor having a 27.4-fold higher response toward 5 ppm of C5H8 (compared to pristine SnO2), exceptionally high selectivity, and a low detection limit of 100 ppb. The sensor also exhibited high stability for prolonged response-recovery cycles, attesting to the strong anchoring of Co-CeO2 catalysts in the SnO2 matrix. Based on our findings, the transition metal-doped metal oxide catalysts, such as Co-CeO2, demonstrate strong potential to completely replace noble metal catalysts, thereby advancing the development of the commercially viable chemiresistive gas sensors free from noble metals, capable of detecting target gases at sub-ppm levels.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39049692

RESUMO

Water-soluble polymers with the ability to complex metal ions through complexing ligands have attracted significant interest in diverse domains, such as optical or catalyst applications. In this paper, we successfully synthesized, through a one-pot process combining polymerization-induced self-assembly and reversible addition-fragmentation chain transfer polymerization, aqueous dispersions of terpyridine-decorated poly[poly(ethylene glycol)methyl ether methacrylate]-b-poly(methyl methacrylate) (tpy-PPEGMA-b-PMMA) amphiphilic block copolymers. The in-situ formation of well-defined amphiphilic block copolymers and their self-assembly led to nanosphere latex with the hydrodynamic diameters increasing from 17 to 52 nm and the length of the copolymers increasing from 21,000 to 51,000 g·mol-1. These aqueous dispersed tpy-PPEGMA-b-PMMA nanospheres effectively complex metal ions, such as Cu2+, in a stoichiometric ratio of 2:1. Subsequently, these metal-complexed nanospheres were employed as soft template nanocarriers to control, on the nanometer scale, the dispersion of metal on a nanostructured support. This is exemplified by the synthesis of copper supported on cerium oxide hollow spheres (Cu-CeO2) using Cu2+-tpy-PPEGMA-b-PMMA as template nanocarriers and CeO2 nanoparticles. This novel assembly engineering strategy for the preparation of atomically dispersed metal on a nanostructured support was highlighted through the utilization of Cu-CeO2 hollow spheres as an electrocatalyst for the nitrate reduction reaction (NO3RR) to NH3. These encouraging outcomes emphasize the potential of metal-metal oxide-nanostructured materials to treat contaminated water sources with nitrate while allowing the green production of ammonia.

16.
Chemosphere ; : 142959, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069101

RESUMO

The metal oxide-based nanostructures of variable size and shape are found effective in optimizing the gas sensing ability and pollutant degradation. The size induced lattice strain and large band gap in 3 nm CeO2 quantum dots evolved the ability towards hydrogen gas sensing and dye degradation compared to nanopebbles and nanoparticles of sizes 15 ± 3, and 30 ± 12 nm. The smaller CeO2 quantum dots than Debye length was found underlying reason for nearly four times sensor response and selectivity towards reducing hydrogen gases than the oxidizing gases at 1 to 10 ppm level. The lattice strain calculated by Rietveld refinement and W-H analysis was found in-line with the size of CeO2 nanostructures. The enhancement in lattice strain and optical band gap (2.66, 2.78, and 2.89 eV) with decrease in size are found critical for determining the overall efficiency of CeO2 nanostructures for photocatalytic activity, attributed to the strong quantum confinement effect. The higher catalytic activity of 98 % was achieved CeO2 quantum dots in comparison to the 95 % and 94 % obtained for CeO2 nanopebbles and nanoparticles. The impact of change in degradation efficacy and gas sensing ability of different CeO2 nanomaterials is discussed in detail. This work offers a novel and simplistic method to produce CeO2 quantum dots as an efficient sensor for selective detection of H2 gas and photocatalyst. The correlation between size, Debye length, band gap, and lattice strain gives an insight for understanding the underlying detection mechanism for selective detection of reducing gas molecules and efficient pollutant remediation.

17.
Heliyon ; 10(13): e33642, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027539

RESUMO

Chitosan is a biocompatible, non-toxic and renewable natural basic polysaccharide that can be cross-linked and reacted with Ce(IV) to form a physiologically active chitosan-Ce(IV) complex. To investigate this novel complex and its potential to hydrolyze phosphate ester bonds, chitosan-cerium complex microspheres resin (CS-CCMR) was prepared from chitosan and ceric ammonium nitrate by reversed-phase suspension cross-linking polymerization. CS-CCMR was characterized, its ability to hydrolyze disodium p-nitrobenzene phosphate (PNPP2Na) and organophosphorus pesticides was investigated, and the hydrolytic mechanism was explored. CS-CCMR was composed of dark yellow microspheres with smooth surfaces and dense pores. It was found that CS-CCMR contained 4.507 mg/g Ce(IV), indicating that coordination polymerization between Ce(IV) and chitosan was successful. The presence of Ce(IV) in CS-CCMR was confirmed by multiple analytical methods and it was found that coordination of Ce(IV) by chitosan was mediated by the nitrogen atom of the amino group and the oxygen atom of the hydroxyl group of chitosan. It was shown that CS-CCMR efficiently hydrolyzed the phosphate ester bonds of PNPP2Na and five organophosphorus pesticides. Hydrolysis of PNPP2Na is potentially accomplished by charge neutralization and nucleophilic substitution. The mechanism of parathion degradation by CS-CCMR involves modification of the nitro group to give aminoparathion, followed by cleavage of the P-O bond to generate diazinphos. Consequently, the novel chitosan-Ce(IV) complex exhibits great efficiency for hydrolysis of phosphate ester bonds and CS-CCMR is expected to be developed as an agent to reduce the possibility of contamination of fruit and vegetable drinks by organophosphorus pesticides.

18.
Sci Total Environ ; 946: 174381, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38964393

RESUMO

Both nanoparticles (NPs) and nano-enabled products have become widely available in consumer markets in the last decade. Surface coating including paints, stains, and sealants, have seen large increases in the inclusion of nanomaterials in their formulations to increase UV resistance, hydrophobicity, and scratch resistance. Currently, most literature studying the release of NPs and byproducts from coated surfaces has focused exclusively on lumber. In this study, well characterized CeO2 NPs were dispersed in either Milli-Q water, or a commercial paint primer and applied to several test surfaces including sanded plywood, drywall, low density polyethylene, acrylonitrile butadiene styrene, polycarbonate, textured polycarbonate with pebble finish, and glass. Coated surfaces were sampled using a method previously developed by U.S. Consumer Product Safety Commission staff to track the release of NPs via simulated dermal contact. Particular attention has been paid to the total amount, and morphology of material released. The total amount of cerium released from coated surfaces was found to be dependent on both the identity of the test surface, as well as the solution used for coating. Water-based application found 22-50 % of the applied cerium removed during testing, while primer-based application showed released rates ranging between 0.1 and 3 %. Finally, the SEM micrographs presented here suggest the release of microplastic particles during simulated dermal contact with plastic surfaces.


Assuntos
Nanopartículas , Nanopartículas/química , Pintura , Cério/química , Propriedades de Superfície
19.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000644

RESUMO

Cerium oxide nanoparticles (CeONPs), as part of tissue regeneration matrices, can protect cells from reactive oxygen species and oxidative stress. In addition, they can influence the properties of the scaffold, including its electrospinnability and mechanical strength. In this work, we prepared electrospun fiber mats from a chitosan and polyethylene oxide blend (CS-PEO) with the addition of ceria nanoparticles (CS-PEO-CeONP). The addition of CeONPs resulted in a smaller fiber diameter and higher swelling compared to CS-PEO fiber mats. CeONP-modified fiber mats also had a higher Young's modulus due to the reinforcing effect of the nanoparticles. Both mats had comparable adhesion and cytocompatibility to mesenchymal stem cells, which had a more rounded morphology on CS-PEO-CeONP compared to elongated cells on the CS-PEO mats. Biocompatibility in an in vivo rat model showed no acute toxicity, no septic or allergic inflammation, and no rough scar tissue formation. The degradation of both mats passed the stage of matrix swelling. CS-PEO-CeONP showed significantly slower biodegradation, with most of the matrix remaining in the tissue after 90 days. The reactive inflammation was aseptic in nature with the involvement of multinucleated foreign-body type giant cells and was significantly reduced by day 90. CeONPs induced the formation of the implant's connective tissue capsule. Thus, the introduction of CeONPs influenced the physicochemical properties and biological activity of CS-PEO nanofiber mats.

20.
Photodiagnosis Photodyn Ther ; : 104285, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038506

RESUMO

AIM: To assess the degree of conversion (DC) and shear bond strength (SBS) of experimental adhesive (EA) infused with and without 1% Cerium oxide (CeO2)-NPs on metallic bracket bonded to enamel conditioned with three different pretreatment regimes PDT-activated (Riboflavin) RF, ECY (Er, Cr: YSGG), and Phosphoric acid (PA). MATERIAL AND METHOD: EA and EA modified with 1% CeO2-NPs were prepared. Characterization of CeO2NPs was assessed using a scanning electron microscope (SEM). Seventy-two premolars extracted due to periodontal or orthodontic reasons were disinfected. Samples were mounted and allocated into three groups according to enamel surface treatment before bracket bonding. Samples in Group 1 were pretreated with Traditional 37% PA-gel; Specimens in Group 2 surface treated with RF-activated PDT, and samples in Group 3 were conditioned using ECY. Brackets were placed on conditioned surfaces and samples were aged and underwent SBS testing using UTM. ARI index was used to assess bond failure. DC was evaluated for both adhesives using FTIR. ANOVA and Tukey post hoc test were used to compare the means and standard deviation (SD) of SBS and DC in different experimental groups. RESULTS: Enamel conditioned with PA and RF activated by PDT demonstrated comparable bond values with 1% CeO2 infused in EA and EA (p>0.05).ARI analysis shows that enamel conditioned with PA and RF activated by PDT showed the majority of failure types between 1 and 2 irrespective of the type of adhesive. DC value in EA (73.28±8.37) was the highest and comparable to 1% CeO2 infused in EA (66.48±6.81) CONCLUSION: RF-activated PDT can be used alternatively to 37% PA for enamel conditioning when bonding metallic brackets. Infiltration of 1% CeO2 NPs in EA improves SBS irrespective of the type of enamel conditioning. Infusion of 1% CeO2 NPs in EA demonstrates no significant difference in DC compared to EA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA