RESUMO
Extracellular vesicles (EVs) are mediators of intercellular communication, recently recognised for their clinical applications. Accurate characterisation and quantification of EVs are critical for understanding of their function and clinical relevance. Many platforms utilise fluorescence for EV characterisation, frequently labelling surface proteins to identify EVs. The heterogeneity of EVs and the lack of a universal protein marker encourages the use of generic EV labelling methods, including membrane labelling. Using nano-flow cytometry, we evaluated six membrane dyes, including MemGlow and CellMask. Evaluation criteria included EV labelling efficacy, non-specific labelling of very low-density lipoproteins (VLDLs), brightness and dye aggregation. Significant variation was observed in dye performance, with certain dyes showing poor EV labelling efficacy or high affinity to VLDLs. Importantly, several promising candidates were identified for further investigation. Overall, this study highlights the importance of selecting appropriate membrane dyes for EV staining tailored to the aims of the study and the EV origin. MemGlow and CellMask proved favourable, allowing bright, sensitive staining of EV membranes with minimal aggregation. However, MemGlow showed an affinity to VLDLs, and CellMask requires additional sample handling for optimal labelling. These results contribute to deepening our understanding of EV membrane dyes, allowing for better dye selection and EV identification in future studies.
RESUMO
The European Commission requested EFSA to update the scientific guidance for the preparation of applications for authorisation of novel foods, previously developed following the adoption of Regulation (EU) 2015/2283 on novel foods. This guidance document provides advice on the scientific information needed to be submitted by the applicant towards demonstrating the safety of the novel food. Requirements pertain to the description of the novel food, production process, compositional data, specifications, proposed uses and use levels and anticipated intake of the novel food. Furthermore, information needed in sections on the history of use of the novel food and/or its source, absorption, distribution, metabolism, excretion, toxicological information, nutritional information and allergenicity is also described. The applicant should integrate and interpret the data presented in the different sections to provide their overall considerations on how the information supports the safety of the novel food under the proposed conditions of use. Where potential health hazards have been identified, they are to be discussed in relation to the anticipated intake of the novel food and the proposed target populations. On the basis of the information provided, EFSA will assess the safety of the novel food under the proposed conditions of use.
RESUMO
When evaluating soft self-assembling materials for use in any application, the structural or morphological characterisation is highly important. We know that the hierarchal molecular self-assembly of these materials into larger structures directly influences behaviours such as performance and stability. It is therefore imperative that these materials are characterised effectively over multiple length scales. Two effective methods of achieving this are small angle scattering (SAS) and imaging. Scattering giving us indirect information about the systems, whereas imaging is often looking at the material directly. In this review, we discuss the benefits, caveats and power of using both these techniques separately and together for the characterisation of supramolecular gels.
RESUMO
The particulate properties of α-lactose monohydrate (αLMH), an excipient and carrier for pharmaceuticals, is important for the design, formulation and performance of a wide range of drug products. Here an integrated multi-scale workflow provides a detailed molecular and inter-molecular (synthonic) analysis of its crystal morphology, surface chemistry and surface energy. Predicted morphologies are validated in 3D through X-ray diffraction contrast tomography. Interestingly, from aqueous solution fastest growth is found to lie along the b-axis, i.e. the longest unit cell dimension of the αLMH crystal structure reflecting the greater opportunities for solvation on the prism compared to the capping faces leading to their slower relative growth rates. The tomahawk morphology reflects the presence of ß-lactose which asymmetrically binds to the capping surfaces creating a polar morphology. The crystal lattice energy is dominated by van der Waals interactions (between lactose molecules) with electrostatic interactions contributing the remainder. Predicted total surface energies are in good agreement with those measured at high surface coverage by inverse gas chromatography, albeit their dispersive contributions are found to be higher than those measured. The calculated surface energies of crystal habit surfaces are not found to be significantly different between different crystal surfaces, consistent with αLMH's known homogeneous binding to drug molecules when formulated. Surface energies for different morphologies reveals crystals with the elongated crystal morphologies have lower surface energies compared to those with a triangular or tomahawk morphologies, correlating well with literature data that the surface energies of the lactose carriers are inversely proportional to their aerosol dispersion performance.
RESUMO
Microneedle technology is a pivotal component of third-generation transdermal drug delivery systems featuring tiny needles that create temporary microscopic channels in the stratum corneum which facilitate drug penetration in the dermis. This review offers a detailed examination of the current types of microneedles, including solid, coated, dissolving, hollow, and swelling microneedles, along with their preparation techniques as well as their benefits and challenges. Use of 3D printing technology is especially gaining significant attention due to its ability to achieve the high dimensional accuracy required for precise fabrication. Additionally, its customisability presents significant potential for exploring new designs and creating personalised microneedles products. Furthermore, this review explores next generation microneedles, especially stimuli-responsive microneedle, bioinspired microneedle and microneedles combined with other transdermal technology like sonophoresis, electroporation and iontophoresis. Regulatory aspects, characterisation techniques, safety considerations, and cost factors have also been addressed which are crucial for translation from lab to the market.
RESUMO
Alström syndrome (AS) is an inherited rare ciliopathy characterised by multi-organ dysfunction and premature cardiovascular disease. This may manifest as an infantile-onset dilated cardiomyopathy with significant associated mortality. An adult-onset restrictive cardiomyopathy may also feature later in life. Loss of function pathogenic variants in ALMS1 have been identified in AS patients, leading to a lack of ALMS1 protein. The biological role of ALMS1 is unknown, particularly in a cardiovascular context. To understand the role of ALMS1 in infantile cardiomyopathy, the reduction of ALMS1 protein seen in AS patients was modelled using human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), in which ALMS1 was knocked out. MuscleMotion analysis and calcium optical mapping experiments suggest that ALMS1 knockout (KO) cells have increased contractility, with altered calcium extrusion and impaired calcium handling dynamics compared to wildtype (WT) counterparts. Seahorse metabolic assays showed ALMS1 knockout iPSC-CMs had increased glycolytic and mitochondrial respiration rates, with ALMS1 knockout cells portraying increased energetic demand and respiratory capacity than WT counterparts. Using senescence associated ß-galactosidase (SA-ß gal) staining assay, we identified increased senescence of ALMS1 knockout iPSC-CMs. Overall, this study provides insights into the molecular mechanisms in AS, particularly the role of ALMS1 in infantile cardiomyopathy in AS, using iPSC-CMs as a 'disease in a dish' model to provide insights into multiple aspects of this complex disease.
Assuntos
Síndrome de Alstrom , Cardiomiopatias , Proteínas de Ciclo Celular , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Alstrom/genética , Síndrome de Alstrom/patologia , Síndrome de Alstrom/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cálcio/metabolismo , Técnicas de Inativação de Genes , Lactente , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologiaRESUMO
BackgroundInfluenza viruses can cause large seasonal epidemics with high healthcare impact and severity as they continually change their virological properties such as genetic makeup over time.AimWe aimed to monitor the characteristics of circulating influenza viruses over the 2022/23 influenza season in the EU/EEA countries. In addition, we wanted to compare how closely the circulating viruses resemble the viral components selected for seasonal influenza vaccines, and whether the circulating viruses had acquired resistance to commonly used antiviral drugs.MethodsWe performed a descriptive analysis of the influenza virus detections and characterisations reported by National Influenza Centres (NIC) from the 30 EU/EEA countries from week 40/2022 to week 39/2023 to The European Surveillance System (TESSy) as part of the Global Influenza Surveillance and Response System (GISRS).ResultsIn the EU/EEA countries, the 2022/23 influenza season was characterised by co-circulation of A(H1N1)pdm09, A(H3N2) and B/Victoria-lineage viruses. The genetic evolution of these viruses continued and clade 6B.1A.5a.2a of A(H1N1)pdm09, 3C.2a1b.2a.2b of A(H3N2) and V1A.3a.2 of B/Victoria viruses dominated. Influenza B/Yamagata-lineage viruses were not reported.DiscussionThe World Health Organization (WHO) vaccine composition recommendation for the northern hemisphere 2023/24 season reflects the European virus evolution, with a change of the A(H1N1)pdm09 component, while keeping the A(H3N2) and B/Victoria-lineage components unchanged.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Estações do Ano , Influenza Humana/virologia , Influenza Humana/epidemiologia , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Europa (Continente)/epidemiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Filogenia , Antivirais/uso terapêutico , Vigilância da População , Variação Genética , União EuropeiaRESUMO
The waste of polymeric materials in our society is increasing year after year, generating a serious pollution problem. One way to deal with this waste problem is to recycle and reuse these materials. This process of recovery of used plastic materials aims to minimise their impact on the environment and reduce the energy consumption required for the generation of new consumer products. Recycling companies that recover these plastic materials must take into account some aspects such as transparency and colour, cleanliness, size, odour and sorting. One of the major disadvantages in accepting these recycled materials in the production processes is their odour, which in some cases causes the rejection of materials with comparable mechanical characteristics. High-density polyethylene, HDPE, is one of the polymeric wastes generated in the packaging industry. The aim of this work is to eliminate the bad odour of HDPE from waste collection plants for application in the recovery and reuse industry. HDPE supplied by a recycling company was washed, characterised and processed, and the odour was analysed by gas chromatography at each stage and by olfactory panel. In view of the results, it was observed that the washing processes managed to reduce the odour. Likewise, the processing of this waste by extrusion and injection managed to further reduce this effect, even eliminating some of the components responsible for odour by treating the samples with acetone and then extruding and injecting these samples. These results have a direct application in the packaging industry with significant shares of recycled material.
Assuntos
Odorantes , Polietileno , Reciclagem , Polietileno/química , PlásticosRESUMO
Staphylococcus species are widespread in poultry environments and can cause various infections, often when the host's defences are compromised. This manuscript reports on a co-infection of chickens with Staphylococcus lentus and Staphylococcus aureus associated with an outbreak of arthritis, synovitis, and osteomyelitis in an organic broiler breeder flock in Austria. Clinically, the affected flock showed weakness, lethargy, lameness, and increased mortality. Post-mortem examinations identified purulent arthritis and femoral head necrosis. Bacteriological analysis using MALDI-TOF MS identified both S. aureus and S. lentus in the affected joints. Antibiotic resistance testing revealed significant resistance, particularly in S. lentus. Histological analysis showed severe inflammation and bacterial colonies in the joints. While S. aureus is a common pathogen in poultry, S. lentus is less frequently reported. This study emphasises the need for detailed bacterial characterisation in outbreaks to better understand the role of less common pathogens like S. lentus. Further research is necessary to elucidate the impact of S. lentus on poultry health and its role in causing arthritis and synovitis, highlighting the importance of comprehensive investigation in such outbreaks.
RESUMO
A novel water-soluble polysaccharide, named PF90-1, with a molecular weight of 1.8 kDa, was isolated and purified from the fibrous root of Pseudostellaria heterophylla. PF90-1 is composed of Gal, Glc and Man in a molar ratio of 73.61: 19.11: 7.28. Methylation analysis revealed that PF90-1 comprises of T-Galp, 1,4-Galp, 1,3,4-Galp, 1,2,3,4-Galp, T-Glcp and 1,3-Manp in a molar ratio of 37.89: 9.37: 17.01: 12.01: 15.88: 7.83. Bioactivity experiments showed that PF90-1 significantly improved lipopolysaccharide (LPS)-induced inflammatory damage in RAW264.7 cells by inhibiting nitric oxide (NO) production and reducing the levels of pro-inflammatory factors (IL-1ß and TNF-α). In addition, PF90-1 exhibited strong antioxidant effects, protecting PC12 cells from H2O2-induced oxidative damage. This findings suggest that PF90-1 holds potential therapeutic value for the treatment of inflammatory and oxidative injuries.
RESUMO
Although the physical properties of a structure, such as stiffness, can be determined using some statical tests, the identification of damping parameters requires a dynamic test. In general, both theoretical prediction and experimental identification of damping are quite difficult. There are many different techniques available for damping identification, and each method gives a different damping parameter. The dynamic indentation method, rheometry, atomic force microscopy, and resonant vibration tests are commonly used to identify the damping of materials, including soft materials. While the viscous damping ratio, loss factor, complex modulus, and viscosity are quite common to describe the damping of materials, there are also other parameters, such as the specific damping capacity, loss angle, half-power bandwidth, and logarithmic decrement, to describe the damping of various materials. Often, one of these parameters is measured, and the measured parameter needs to be converted into another damping parameter for comparison purposes. In this review, the theoretical derivations of different parameters for the description and quantification of damping and their relationships are presented. The expressions for both high damping and low damping are included and evaluated. This study is considered as the first comprehensive review article presenting the theoretical derivations of a large number of damping parameters and the relationships among many damping parameters, with a quantitative evaluation of accurate and approximate formulas. This paper could be a primary resource for damping research and teaching.
RESUMO
The issue of plastic pollution has been exacerbated by the discovery of small plastic particles known as "microplastic". While the harmful effects of microplastics are becoming increasingly apparent, life-cycle assessment (LCA), as a holistic environmental assessment tool, has yet to offer a solution that can quantitatively capture the impacts associated with microplastics. In this paper, we conducted a systematic literature review to investigate how existing LCA studies quantify the environmental and human health effects of microplastics. A detailed analysis of 187 studies revealed that microplastics are rarely quantified, or even qualitatively discussed, in most LCAs. Thus, the true impacts of plastic products may be underrepresented and underestimated, leading to biased decision-making. We believe that this status quo is attributable to four fundamental issues, including (i) lack of microplastic leakage data; (ii) lack of quantitative cause-effect relationships between microplastic concentration and their impacts; (iii) exclusion of the "use" phase from the scope of analysis; and (iv) exclusion of long-term effects from landfilled plastic waste. These findings highlight the need for greater efforts and investment in microplastic research and data collection. To address the current knowledge gap, this article presents practical recommendations on how microplastics can be incorporated into the LCA framework, based on latest research.
RESUMO
The aim of the work presented in this paper was development of a thermodynamically consistent constitutive model for orthotopic metals and determination of its parameters based on standard characterisation methods used in the aerospace industry. The model was derived with additive decomposition of the strain tensor and consisted of an elastic part, derived from Helmholtz free energy, Hill's thermodynamic potential, which controls evolution of plastic deformation, and damage orthotopic potential, which controls evolution of damage in material. Damage effects were incorporated using the continuum damage mechanics approach, with the effective stress and energy equivalence principle. Material characterisation and derivation of model parameters was conducted with standard specimens with a uniform cross-section, although a number of tests with non-uniform cross-sections were also conducted here. The tests were designed to assess the extent of damage in material over a range of plastic deformation values, where displacement was measured locally using digital image correlation. The new model was implemented as a user material subroutine in Abaqus and verified and validated against the experimental results for aerospace-grade aluminium alloy 2024-T3. Verification was conducted in a series of single element tests, designed to separately validate elasticity, plasticity and damage-related parts of the model. Validation at this stage of the development was based on comparison of the numerical results with experimental data obtained in the quasistatic characterisation tests, which illustrated the ability of the modelling approach to predict experimentally observed behaviour. A validated user material subroutine allows for efficient simulation-led design improvements of aluminium components, such as stiffened panels and the other thin-wall structures used in the aerospace industry.
RESUMO
Characterisation of the water treatment sludge (WTS) generated in drinking water treatment plants (DWTPs) is crucial to define alternatives for its adequate management, including potential reuse options. To define these alternatives, it is necessary to evaluate rainfall seasonality effect on WTS production and its physical and chemical characteristics. This study assessed the production and characterisation of four types of alum-based WTS. The WTS was generated in a pilot-scale system from different raw water turbidities (i.e., low: <5 NTU, medium: 5-10 NTU, high: ≥10 NTU, and very high turbidity: â¼300 NTU) and coagulant doses. To estimate WTS production, mathematical models based on variables such as raw water turbidity, coagulant dosage, and organic matter removed were used. The WTS characterisations included physical (solids and particle size distribution), chemical (metallic oxides, pH, mineral phases), and surface properties (functional groups and zero-charge point pH). The modified Kawamura model presented the best fit (R2 = 1.0, RMSE = 0.1062 and the lower Akaike Information Criterion) for the estimation of WTS production, indicating that at the DWTPs, it is possible to make sludge production projections using only two simple variables: coagulant dose and the raw water turbidity. The four types of WTS consist mainly of amorphous materials (45-65 %), featuring some mineral phases and exhibiting high contents of Al (Al2O3: 30-34 %), Si (SiO2: 21-26 %) and Fe (Fe2O3: 11-13 %). Nevertheless, very high turbidity WTS shows variations in its characteristics, notably a heightened content of clays. As a result of the high concentrations of Al and Fe, the WTS has the potential to be used as coagulants or for the recovery of coagulants, especially low turbidity WTS, which is produced from water with low turbidity and organic matter. The presence of aluminium-silicate clays and the surface functional groups of the silica network suggest that WTS, particularly very high turbidity WTS, also has the potential to be raw materials for generating adsorbents. The potential applications of WTS in coagulation and adsorption can be leveraged in wastewater treatment, promoting the circular economy in the water sector.
RESUMO
Phylogenetic analysis of four DNA regions (ITS, LSU, mtSSU and tef1α) supported the existence of five European Taphrina species which colonise Alnus in Europe. In addition to previously well-defined species, T.viridis is, for the first time recognised, by molecular study as a species related to T.sadebeckii. Analysis of publicly available sequences of barcoding regions suggested that T.viridis is only associated with A.alnobetula and no other Taphrina species colonize this host tree. Symptomatic, morphological, and physiological characterisation of T.viridis are provided together with the key for identification of Alnus associated Taphrina species in Europe and North America.
RESUMO
Plant peptidase inhibitors play crucial roles in plant defence mechanisms and physiological processes. In this study, we isolated and characterised a Kunitz trypsin inhibitor from Enterolobium gummiferum seeds named EgPI (E. gummiferum peptidase inhibitor). The purification process involved two chromatography steps using size exclusion and hydrophobic resins, resulting in high purity and yield. EgPI appeared as a single band of ~20 kDa in SDS-PAGE. Under reducing conditions, the inhibitor exhibited two polypeptide chains, with 15 and 5 kDa. Functional characterisation revealed that EgPI displayed an inhibition stoichiometry of 1:1 against trypsin, with a dissociation constant of 8.4 × 10-9 mol·L-1. The amino-terminal sequencing of EgPI revealed the homology with Kunitz inhibitors. Circular dichroism analysis provided insights into the secondary structure of EgPI, which displayed the signature typical of Kunitz inhibitors. Stability studies demonstrated that EgPI maintained the secondary structure necessary to exhibit its inhibitory activity up to 70 °C and over a pH range from 2 to 8. Microbiological screening revealed that EgPI has antibiofilm properties against pathogenic yeasts at 1.125 µmol·L-1, and EgPI reduced C. albicans biofilm formation by 82.7%. The high affinity of EgPI for trypsin suggests potential applications in various fields. Furthermore, its antibiofilm properties recommended its usefulness in agriculture and antimicrobial therapy research, highlighting the practical implications of our research.
Assuntos
Biofilmes , Fabaceae , Proteínas de Plantas , Sementes , Inibidores da Tripsina , Sementes/química , Biofilmes/efeitos dos fármacos , Fabaceae/química , Inibidores da Tripsina/farmacologia , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Candida albicans/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Sequência de Aminoácidos , PeptídeosRESUMO
Iodamoeba is a single-celled intestinal parasite, which is common in humans in certain parts of the world, and also in pigs. For the first time, we provide DNA-based evidence of goat, dromedary, fallow deer, and donkey as hosts of Iodamoeba and show that Iodamoeba-specific nucleotide sequences from these four hosts do not appear to overlap with those of humans, unlike those from pigs. We moreover show that similar strains of Iodamoeba can be found in Madagascar, Western Sahara, and Ecuador and that intra-sample diversity is typically extensive across even small fragments of DNA in both human and non-human hosts.
Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , Animais , Humanos , Filogenia , Equador , Madagáscar , DNA de Protozoário/genética , Equidae/parasitologia , Amebozoários/genética , Amebozoários/classificação , Dados de Sequência Molecular , Cervos/parasitologia , Camelus/parasitologia , Cabras/parasitologia , Análise de Sequência de DNA , SuínosRESUMO
The Two-Photon Absorption-Transient Current Technique (TPA-TCT) is a device characterisation technique that enables three-dimensional spatial resolution. Laser light in the quadratic absorption regime is employed to generate excess charge carriers only in a small volume around the focal spot. The drift of the excess charge carriers is studied to obtain information about the device under test. Neutron-, proton-, and gamma-irradiated p-type pad silicon detectors up to equivalent fluences of about 7 × 1015 neq/cm2 and a dose of 186 Mrad are investigated to study irradiation-induced effects on the TPA-TCT. Neutron and proton irradiation lead to additional linear absorption, which does not occur in gamma-irradiated detectors. The additional absorption is related to cluster damage, and the absorption scales according to the non-ionising energy loss. The influence of irradiation on the two-photon absorption coefficient is investigated, as well as potential laser beam depletion by the irradiation-induced linear absorption. Further, the electric field in neutron- and proton-irradiated pad detectors at an equivalent fluence of about 7 × 1015 neq/cm2 is investigated, where the space charge of the proton-irradiated devices appears inverted compared to the neutron-irradiated device.
RESUMO
Lymphoedema tissue is characterised by excess free fluid and structural changes to the extracellular matrix (ECM) in the form of fibrotic and fatty deposition. These tissue characteristics are integral to the assessment of lymphoedema progression; however, clinicians and researchers often focus on changes in the free fluid, volume and function of lymphatic vasculature to inform practice. Subsequently, little is known about the effect of clinical interventions on lymphoedema tissue composition. This article presents a novel approach to classify lymphoedema tissue. The Localised Objective Characterisation Assessment of Lymphoedema (LOCAL) classification combines diagnostic and clinically meaningful objective assessment thresholds to infer lymphoedema pathophysiological changes in tissue layers. The LOCAL classification method was verified using data from fifteen women with unilateral breast cancer-related lymphoedema who were evaluated at three sites on each arm using high-frequency ultrasound (HFUS), bio-electrical impedance spectroscopy (BIS) and volume measurements. Participants exhibited an uneven distribution of volume between the proximal and distal segments of the arm (p = 0.023), with multiple tissue compositional categories observed across sites on the same limb (p < 0.001). The LOCAL method demonstrated utility in categorising a diverse range of lymphoedema tissue layer changes beyond what can be ascertained from whole-limb measures.
RESUMO
In India, ginger is highly valued for cultural and medicinal purposes. Besides traditional uses, ginger has been proven for its efficacy in cancer, chemotherapy-induced nausea, bacterial infections, neuroinflammation, and oxidative stress. This study focuses on Zingiber sianginensis, a rare ginger species in the Siang region of Arunachal Pradesh, India. This study studied pharmacognostical evaluation, phytometabolomics analysis, and its effect on oxidative stress biomarkers. Microscopic and chemical tests were employed for pharmacognostical evaluation, revealing distinctive characteristics of Zingiber sianginensis, such as non-close collateral vascular bundles and unique cork layers. Chemical tests, including the phloroglucinol and hydrochloric acid test, differentiated Zingiber sianginensis from Zingiber officinale Roscoe. Phytometabolomics analysis, using Gas Chromatography-Mass Spectrometry (GC/MS) and Liquid Chromatography-Electrospray Ionisation-Quadrupole Time of Flight-Mass Spectrometry (LC-ESI-QTOF-MS/MS) techniques, identified a diverse range of metabolites in Zingiber sianginensis, including polyphenols, monoterpenoids, diterpenoids, sesquiterpenoids, and organic compounds. The LC-ESI-QTOF-MS/MS analysis revealed 158 compounds, verified through cross-referencing with established databases. Heavy metal analysis by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) confirmed that Zingiber sianginensis complies with safety standards, showing concentrations of heavy metals within acceptable limits. The isolation and characterization of compounds from Zingiber sianginensis identified natural products such as (R)-(-)- alpha-Curcumene (1), 1-Dehydro-[10]-gingerdione (2), 6-Shogaol (3), and 6-Gingerol (4). Quantification of 6-gingerol revealed that Zingiber sianginensis contains approximately twice the amount compared to Zingiber officinale Roscoe's, suggesting its potential as a source for higher 6-gingerol content. The hydroalcoholic extract of Zingiber sianginensis exhibited antioxidant properties, reducing oxidative stress biomarkers in human dermal fibroblast cells treated with rotenone. Allantoin and 3-bromotyrosine levels significantly decreased, indicating the extract's potential in combating oxidative stress-related disorders. Overall, this comprehensive study provides valuable insights into the pharmacognostical, phytometabolomic, and safety aspects of Zingiber sianginensis, highlighting its potential as a source of bioactive compounds with health benefits.