Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Cardiovasc Imaging ; 40(4): 709-722, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38150139

RESUMO

The existing multilabel X-Ray image learning tasks generally contain much information on pathology co-occurrence and interdependency, which is very important for clinical diagnosis. However, the challenging part of this subject is to accurately diagnose multiple diseases that occurred in a single X-Ray image since multiple levels of features are generated in the images, and create different features as in single label detection. Various works were developed to address this challenge with proposed deep learning architectures to improve classification performance and enrich diagnosis results with multi-probability disease detection. The objective is to create an accurate result and a faster inference system to support a quick diagnosis in the medical system. To contribute to this state-of-the-art, we designed a fusion architecture, CheXNet and Feature Pyramid Network (FPN), to classify and discriminate multiple thoracic diseases from chest X-Rays. This concept enables the model to extract while creating a pyramid of feature maps with different spatial resolutions that capture low-level and high-level semantic information to encounter multiple features. The model's effectiveness is evaluated using the NIH ChestXray14 dataset, with the Area Under Curve (AUC) and accuracy metrics used to compare the results against other cutting-edge approaches. The overall results demonstrate that our method outperforms other approaches and has become promising for multilabel disease classification in chest X-Rays, with potential applications in clinical practice. The result demonstrated that we achieved an average AUC of 0.846 and an accuracy of 0.914. Further, our proposed architecture diagnoses images in 0.013 s, faster than the latest approaches.


Assuntos
Aprendizado Profundo , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Radiografia Torácica , Humanos , Reprodutibilidade dos Testes , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Doenças Torácicas/diagnóstico por imagem , Doenças Torácicas/classificação , Pulmão/diagnóstico por imagem
2.
J Clin Med ; 11(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36142989

RESUMO

Globally, coal remains one of the natural resources that provide power to the world. Thousands of people are involved in coal collection, processing, and transportation. Particulate coal dust is produced during these processes, which can crush the lung structure of workers and cause pneumoconiosis. There is no automated system for detecting and monitoring diseases in coal miners, except for specialist radiologists. This paper proposes ensemble learning techniques for detecting pneumoconiosis disease in chest X-ray radiographs (CXRs) using multiple deep learning models. Three ensemble learning techniques (simple averaging, multi-weighted averaging, and majority voting (MVOT)) were proposed to investigate performances using randomised cross-folds and leave-one-out cross-validations datasets. Five statistical measurements were used to compare the outcomes of the three investigations on the proposed integrated approach with state-of-the-art approaches from the literature for the same dataset. In the second investigation, the statistical combination was marginally enhanced in the ensemble of multi-weighted averaging on a robust model, CheXNet. However, in the third investigation, the same model elevated accuracies from 87.80 to 90.2%. The investigated results helped us identify a robust deep learning model and ensemble framework that outperformed others, achieving an accuracy of 91.50% in the automated detection of pneumoconiosis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36141457

RESUMO

Pneumoconiosis is a group of occupational lung diseases induced by mineral dust inhalation and subsequent lung tissue reactions. It can eventually cause irreparable lung damage, as well as gradual and permanent physical impairments. It has affected millions of workers in hazardous industries throughout the world, and it is a leading cause of occupational death. It is difficult to diagnose early pneumoconiosis because of the low sensitivity of chest radiographs, the wide variation in interpretation between and among readers, and the scarcity of B-readers, which all add to the difficulty in diagnosing these occupational illnesses. In recent years, deep machine learning algorithms have been extremely successful at classifying and localising abnormality of medical images. In this study, we proposed an ensemble learning approach to improve pneumoconiosis detection in chest X-rays (CXRs) using nine machine learning classifiers and multi-dimensional deep features extracted using CheXNet-121 architecture. There were eight evaluation metrics utilised for each high-level feature set of the associated cross-validation datasets in order to compare the ensemble performance and state-of-the-art techniques from the literature that used the same cross-validation datasets. It is observed that integrated ensemble learning exhibits promising results (92.68% accuracy, 85.66% Matthews correlation coefficient (MCC), and 0.9302 area under the precision-recall (PR) curve), compared to individual CheXNet-121 and other state-of-the-art techniques. Finally, Grad-CAM was used to visualise the learned behaviour of individual dense blocks within CheXNet-121 and their ensembles into three-color channels of CXRs. We compared the Grad-CAM-indicated ROI to the ground-truth ROI using the intersection of the union (IOU) and average-precision (AP) values for each classifier and their ensemble. Through the visualisation of the Grad-CAM within the blue channel, the average IOU passed more than 90% of the pneumoconiosis detection in chest radiographs.


Assuntos
Pneumopatias , Pneumoconiose , Algoritmos , Poeira , Humanos , Pneumoconiose/diagnóstico por imagem , Raios X
4.
Multimed Tools Appl ; 81(21): 30615-30645, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431611

RESUMO

One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.

5.
SN Comput Sci ; 2(3): 226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33899005

RESUMO

COVID-19 also referred to as Corona Virus disease is a communicable disease that is caused by a coronavirus. Significant number of people who are tainted with this infection will have to brave and encounter moderate to severe respiratory sickness. Aged persons, sick, convalescing people and all those having underlying health complications like diabetes, chronic breathing diseases and cardiovascular diseases are bound to contract this sickness if not taken proper care of. At the current scenario, there are neither definite treatments nor inoculations against COVID-19. Nevertheless, there are numerous continuing clinical trials assessing the impending treatments and vaccines. Sensing the threatening impacts of Covid-19, researchers of computer science have started using various techniques and approaches of Machine Learning and Deep Learning to detect the presence of the disease using X-rays and CT images. The biggest stumbling block here is that there are only a few datasets available. There is also less number of experts for marking the information explicit to this new strain of infection in people. Artificial Intelligence centred tools can be designed and developed quickly for adapting the existing AI models and for leveraging the ability to modify and associating them with the preliminary clinical understanding to address the new group of COVID-19 and the novel challenges associated with it. In this paper, we look into a few techniques of Machine Learning and Deep Learning that have been employed to analyse Corona Virus Data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA