Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38987436

RESUMO

In vitro gill models are becoming increasingly important in aquatic toxicology, yet the fish gill invitrome is underrepresented, encompassing approximately 0.1% of extant species. Here, we describe the establishment and characterisation of two gill-derived, epithelial-like cell lines isolated from fish species of significant importance to New Zealand: Chrysophrys auratus (Australasian snapper) and Oncorhynchus tshawytscha (Chinook salmon). Designated CAgill1PFR (Chrysophrys auratus, gill 1, Plant & Food Research) and OTgill1PFR (Oncorhynchus tshawytscha, gill 1, Plant & Food Research), these cell lines have each been passaged greater than each 70 times over several years and are considered spontaneously immortalised. Both cell lines required serum for growth and exhibited differential responses to basal media formulations. CAgill1PFR was sensitive to low temperatures (4 °C) but replicated at high temperatures (30 °C), whereas OTgill1PFR was sensitive to high temperatures but remained viable at low temperatures, mirroring the natural environment of their host species. Immunostaining revealed expression of epithelial cell markers cytokeratin and E-cadherin, alongside positivity for the mesenchymal cell marker, vimentin. CAgill1PFR was more sensitive to the environmental toxin 3,4 dichloroaniline than OTgill1PFR through measurements of metabolic activity, membrane integrity, and lysosomal function. Furthermore, CAgill1PFR produced less CYP1A activity, indicative of ongoing biotransformation processes, in response to beta-naphthoflavone than OTgill1PFR. These cell lines expand the toolbox of resources and emphasise the need for species-specific aquatic toxicology research.

2.
Genes Brain Behav ; 23(3): e12898, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38817102

RESUMO

Aquaculturists use polyploid fish to maximize production albeit with some unintended consequences including compromised behaviors and physiological function. Given benefits of probiotic therapies (e.g., improved immune response, growth, and metabolism), we explored probiotic supplementation (mixture of Bifidobacterium, Lactobacillus, and Lactococcus), to overcome drawbacks. We first examined fish gut bacterial community composition using 16S metabarcoding (via principal coordinate analyses and PERMANOVA) and determined probiotics significantly impacted gut bacteria composition (p = 0.001). Secondly, we examined how a genomic disruptor (triploidy) and diet supplements (probiotics) impact gene transcription and behavioral profiles of hatchery-reared Chinook salmon (Oncorhynchus tshawytscha). Juveniles from four treatment groups (diploid-regular feed, diploid-probiotic feed, triploid-regular feed, and triploid-probiotic feed; n = 360) underwent behavioral assays to test activity, exploration, neophobia, predator evasion, aggression/sociality, behavioral sensitivity, and flexibility. In these fish, transcriptional profiles for genes associated with neural functions (neurogenesis/synaptic plasticity) and biomarkers for stress response and development (growth/appetite) were (i) examined across treatments and (ii) used to describe behavioral phenotypes via principal component analyses and general linear mixed models. Triploids exhibited a more active behavioral profile (p = 0.002), and those on a regular diet had greater Neuropeptide Y transcription (p = 0.02). A growth gene (early growth response protein 1, p = 0.02) and long-term neural development genes (neurogenic differentiation factor, p = 0.003 and synaptysomal-associated protein 25-a, p = 0.005) impacted activity and reactionary profiles, respectively. Overall, our probiotic treatment did not compensate for triploidy. Our research highlights novel applications of behavioral transcriptomics for identifying candidate genes and dynamic, mechanistic associations with complex behavioral repertoires.


Assuntos
Microbioma Gastrointestinal , Lactococcus , Probióticos , Salmão , Transcriptoma , Triploidia , Animais , Probióticos/farmacologia , Probióticos/administração & dosagem , Salmão/genética , Salmão/microbiologia , Lactococcus/genética , Lactobacillus/genética , Comportamento Animal/efeitos dos fármacos
3.
Conserv Physiol ; 12(1): coae021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784525

RESUMO

Green sturgeon (Acipenser medirostris) are an anadromous threatened species of sturgeon found along the Pacific coast of North America. The southern distinct population segment only spawns in the Sacramento River and is exposed to water temperatures kept artificially cold for the conservation and management of winter-run Chinook salmon (Oncorhynchus tshawytscha). Past research has demonstrated costs of cold-water rearing including reduced growth rates, condition and survivorship of juvenile green sturgeon. Our research investigates how the stressors of water temperature and food limitation influence the metabolic performance of green sturgeon. We reared green sturgeon at two acclimation temperatures (13 and 19°C) and two ration amounts (100% and 40% of optimal feed). We then measured the routine and maximum metabolic rates (RMR and MMR, respectively) of sturgeon acclimated to these rearing conditions across a range of acute temperature exposures (11 to 31°C). Among both temperature acclimation treatments (13 or 19°C), we found that feed restriction reduced RMR across a range of acute temperatures. The influence of feed restriction on RMR and MMR interacted with acclimation temperature. Fish reared at 13°C preserved their MMR and aerobic scope (AS) despite feed restriction, while fish fed reduced rations and acclimated to 19°C showed reduced MMR and AS capacity primarily at temperatures below 16°C. The sympatry of threatened green sturgeon with endangered salmonids produces a conservation conflict, such that cold-water releases for the conservation of at-risk salmonids may constrain the metabolic performance of juvenile green sturgeon. Understanding the impacts of environmental conditions (e.g. temperature, dissolved oxygen) on ecological interactions of green sturgeon will be necessary to determine the influence of salmonid-focused management.

4.
Front Immunol ; 15: 1306458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601152

RESUMO

Microbial management is central to aquaculture's efficiency. Pediococcus acidilactici MA18/5M has shown promising results promoting growth, modulation of the immune response, and disease resistance in many fishes. However, the mechanisms through which this strain confers health benefits in fish are poorly understood, particularly in Pacific salmonid models. Briefly, the aims of this study were to i) assess the protective effects of P. acidilactici MA18/5M by examining gut barrier function and the expression of tight junction (TJ) and immune genes in vitro and in vivo, and ii) to determine the protective effects of this strain against a common saltwater pathogen, Vibrio anguillarum J382. An in vitro model of the salmonid gut was employed utilizing the cell line RTgutGC. Barrier formation and integrity assessed by TEER measurements in RTgutGC, showed a significant decrease in resistance in cells exposed only to V. anguillarum J382 for 24 h, but pre-treatment with P. acidilactici MA18/5M for 48 h mitigated these effects. While P. acidilactici MA18/5M did not significantly upregulate tight junction and immune molecules, pre-treatment with this strain protected against pathogen-induced insults to the gut barrier. In particular, the expression of ocldn was significantly induced by V. anguillarum J382, suggesting that this molecule might play a role in the host response against this pathogen. To corroborate these observations in live fish, the effects of P. acidilactici MA18/5M was evaluated in Chinook salmon reared in real aquaculture conditions. Supplementation with P. acidilactici MA18/5M had no effect on Chinook salmon growth parameters after 10 weeks. Interestingly, histopathological results did not show alterations associated with P. acidilactici MA18/5M supplementation, indicating that this strain is safe to be used in the industry. Finally, the expression pattern of transcripts encoding TJ and immune genes in all the treatments suggest that variation in expression is more likely to be due to developmental processes rather than P. acidilactici MA18/5M supplementation. Overall, our results showed that P. acidilactici MA18/5M is a safe strain for use in fish production, however, to assess the effects on growth and immune response previously observed in other salmonid species, an assessment in adult fish is needed.


Assuntos
Pediococcus acidilactici , Probióticos , Salmonidae , Animais , Probióticos/farmacologia , Dieta , Resistência à Doença
5.
Environ Pollut ; 346: 123364, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38228259

RESUMO

The use of internal body residues has the potential to improve toxicological assessments of hydrophobic pesticides. The acute toxicity of three classes of pesticides were assessed in juvenile Chinook salmon using internal body residues. Chinook salmon were exposed to two current-use pesticides bifenthrin and fipronil, and 4,4'- dichlorodiphenyldichloroethylene (DDE), which is a degradation product of the legacy pesticide dichlorodiphenyltrichloroethane (DDT). After 96-h of aqueous exposure to each pesticide, the pesticide content in whole-body Chinook salmon homogenates was measured using gas chromatography/mass spectrometry with methane negative chemical ionization. The wet-weight (ww) normalized lethal residue at 50% mortality (LR50) was lowest for bifenthrin (0.654 nmol/g ww), followed by fipronil (7.17 nmol/g ww) and the sum of fipronil and its sulfone, sulfide, and desulfinyl degradation products (8.72 nmol/g ww). No lethality was observed for DDE, even at the highest body residue (>116 nmol/g ww). LR50 estimates were also normalized to dry weight and lipid content and compared to field-caught fish to assess risk. The use of a risk quotient approach indicated that bifenthrin imparts the highest risk of acute toxicity in juvenile Chinook salmon among the three pesticides tested. In comparison to external dose metrics, the use of internal body residues has the potential to improve risk assessment by providing a more direct link between pesticide concentration at the receptor site and toxicological effects.


Assuntos
Praguicidas , Piretrinas , Poluentes Químicos da Água , Animais , Salmão/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Piretrinas/toxicidade , Praguicidas/toxicidade
6.
Environ Res ; 241: 117476, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879388

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) along the west coast of North America have experienced significant declines in abundance and body size over recent decades due to several anthropogenic stressors. Understanding the reasons underlying the relatively high levels of persistent organic pollutants (POPs) in Chinook stocks is an important need, as it informs recovery planning for this foundation species, as well for the Chinook-dependent Resident killer whales (Orcinus orca, RKW) of British Columbia (Canada) and Washington State (USA). We evaluated the influence of stock-related differences in feeding ecology, using stable isotopes, and marine rearing ground on the concentrations and patterns of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Chinook salmon. A principal components analysis (PCA) revealed a clear divergence of PCB and PBDE congener patterns between Chinook with a nearshore rearing distribution ('shelf resident') versus a more offshore distribution. Shelf resident Chinook had 12-fold higher PCB concentrations and 46-fold higher PBDE concentrations relative to offshore stocks. Shelf resident Chinook had PCB and PBDE profiles that were heavier and dominated by more bioaccumulative congeners, respectively. The higher δ13C and δ15N in shelf resident Chinook compared to the offshore rearing stocks, and their different marine distributions explain the large divergence in contaminant levels and profiles, with shelf resident stocks being heavily influenced by land-based sources of industrial contamination. Results provide compelling new insight into the drivers of contaminant accumulation in Chinook salmon, raise important questions about the consequences for their health, and explain a major pathway to the heavily POP-contaminated Resident killer whales that consume them.


Assuntos
Bifenilos Policlorados , Orca , Animais , Bifenilos Policlorados/análise , Salmão/metabolismo , Éteres Difenil Halogenados/análise , Oceano Pacífico , Orca/metabolismo , Colúmbia Britânica
7.
Integr Environ Assess Manag ; 20(2): 419-432, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062648

RESUMO

One outcome of the 2022 Society of Environmental Toxicology and Chemistry Pellston Workshop on incorporating climate change predictions into ecological risk assessments was the key question of how to integrate ecological risk assessments that focus on contaminants with the environmental alterations from climate projections. This article summarizes the results of integrating selected direct and indirect effects of climate change into an existing Bayesian network previously used for ecological risk assessment. The existing Bayesian Network Relative Risk Model integrated the effects of two organophosphate pesticides (malathion and diazinon), water temperature, and dissolved oxygen levels on the Chinook salmon population in the Yakima River Basin (YRB), Washington, USA. The endpoint was defined as the entity, Yakima River metapopulation, and the attribute was defined as no decline to a subpopulation or the overall metapopulation. In this manner, we addressed the management objective of no net loss of Chinook salmon, an iconic and protected species. Climate change-induced changes in water quality parameters (temperature and dissolved oxygen levels) used models based on projected climatic conditions in the 2050s and 2080s by the use of a probabilistic model. Pesticide concentrations in the original model were modified assuming different scenarios of pest control strategies in the future, because climate change may alter pest numbers and species. Our results predict that future direct and indirect changes to the YRB will result in a greater probability that the salmon population will continue to fail to meet the management objective of no net loss. As indicated by the sensitivity analysis, the key driver in salmon population risk was found to be current and future changes in temperature and dissolved oxygen, with pesticide concentrations being not as important. Integr Environ Assess Manag 2024;20:419-432. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Mudança Climática , Praguicidas , Washington , Teorema de Bayes , Rios , Medição de Risco , Oxigênio , Praguicidas/toxicidade
8.
J Fish Dis ; 47(3): e13900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38058214

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand are known to develop abnormal spinal curvature late in seawater production. Its cause is presently unknown, but there is evidence to suggest a neuromuscular pathology. Using magnetic resonance imaging (MRI), we evaluated the relationship between soft tissue pathology and spinal curvature in farmed Chinook salmon. Regions of interest (ROIs) presenting as pathologic MRI signal hyper-intensity were identified from scans of 24 harvest-sized individuals: 13 with radiographically-detectable spinal curvature and 11 without. ROIs were excised from individuals using anatomical landmarks as reference points and histologically analysed. Pathologic MRI signal was observed more frequently in individuals with radiographic curvature (92%, n = 12) than those without (18%, n = 2), was localized to the peri-vertebral connective tissues and musculature, and presented as three forms: inflammation, fibrosis, or both. These pathologies are consistent with a chronic inflammatory process, such as that observed during recovery from a soft tissue injury, and suggest spinal curvature in farmed Chinook salmon may be associated with damage to and/or compromised integrity of the peri-vertebral soft tissues. Future research to ascertain the contributing factors is required.


Assuntos
Doenças dos Peixes , Curvaturas da Coluna Vertebral , Humanos , Animais , Salmão , Doenças dos Peixes/diagnóstico por imagem , Doenças dos Peixes/patologia , Coluna Vertebral , Inflamação/diagnóstico por imagem , Inflamação/veterinária
9.
Environ Sci Technol ; 58(1): 132-142, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154032

RESUMO

Chemical pollution can degrade aquatic ecosystems. Chinook salmon in contaminated habitats are vulnerable to health impacts from toxic exposures. Few studies have been conducted on adverse health outcomes associated with current levels and mixtures of contaminants. Fewer still address effects specific to the juvenile life-stage of salmonids. The present study evaluated contaminant-related effects from dietary exposure to environmentally relevant concentrations and mixture profiles in juvenile Chinook salmon from industrialized waterways in the U.S. Pacific Northwest using two end points: growth assessment and disease susceptibility. The dose and chemical proportions were reconstituted based on environmental sampling and analysis using the stomach contents of juvenile Chinook salmon recently collected from contaminated, industrialized waterways. Groups of fish were fed a mixture with fixed proportions of 10 polychlorinated biphenyls (PCBs), 3 dichlorodiphenyltrichloroethanes (DDTs), and 13 polycyclic aromatic hydrocarbons (PAHs) at five concentrations for 35 days. These contaminant compounds were selected because of elevated concentrations and the widespread presence in sediments throughout industrialized waterways. Fork length and otolith microstructural growth indicators were significantly reduced in fish fed environmentally relevant concentrations of these contaminants. In addition, contaminant-exposed Chinook salmon were more susceptible to disease during controlled challenges with the pathogen Aeromonas salmonicida. Our results indicate that dietary exposure to contaminants impairs growth and immune function in juvenile Chinook salmon, thereby highlighting that current environmental exposure to chemicals of potential management concern threatens the viability of exposed salmon.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Exposição Dietética/análise , Salmão/metabolismo , Ecossistema , Exposição Ambiental/análise , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Poluentes Químicos da Água/análise
10.
PeerJ ; 11: e16487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047019

RESUMO

Background: Considerable resources are spent to track fish movement in marine environments, often with the intent of estimating behavior, distribution, and abundance. Resulting data from these monitoring efforts, including tagging studies and genetic sampling, often can be siloed. For Pacific salmon in the Northeast Pacific Ocean, predominant data sources for fish monitoring are coded wire tags (CWTs) and genetic stock identification (GSI). Despite their complementary strengths and weaknesses in coverage and information content, the two data streams rarely have been integrated to inform Pacific salmon biology and management. Joint, or integrated, models can combine and contextualize multiple data sources in a single statistical framework to produce more robust estimates of fish populations. Methods: We introduce and fit a comprehensive joint model that integrates data from CWT recoveries and GSI sampling to inform the marine life history of Chinook salmon stocks at spatial and temporal scales relevant to ongoing fisheries management efforts. In a departure from similar models based primarily on CWT recoveries, modeled stocks in the new framework encompass both hatchery- and natural-origin fish. We specifically model the spatial distribution and marine abundance of four distinct stocks with spawning locations in California and southern Oregon, one of which is listed under the U.S. Endangered Species Act. Results: Using the joint model, we generated the most comprehensive estimates of marine distribution to date for all modeled Chinook salmon stocks, including historically data poor and low abundance stocks. Estimated marine distributions from the joint model were broadly similar to estimates from a simpler, CWT-only model but did suggest some differences in distribution in select seasons. Model output also included novel stock-, year-, and season-specific estimates of marine abundance. We observed and partially addressed several challenges in model convergence with the use of supplemental data sources and model constraints; similar difficulties are not unexpected with integrated modeling. We identify several options for improved data collection that could address issues in convergence and increase confidence in model estimates of abundance. We expect these model advances and results provide management-relevant biological insights, with the potential to inform future mixed-stock fisheries management efforts, as well as a foundation for more expansive and comprehensive analyses to follow.


Assuntos
Oncorhynchus , Salmão , Animais , Salmão/genética , Pesqueiros , Oceano Pacífico , Espécies em Perigo de Extinção
11.
Biology (Basel) ; 12(10)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37887052

RESUMO

In New Zealand, during the hottest periods of the year, some salmon farms in the Marlborough Sounds reach water temperatures above the optimal range for Chinook salmon. High levels of mortality are recorded during these periods, emphasising the importance of understanding thermal stress in this species. In this study, the responses of Chinook salmon (Oncorhynchus tshawytscha) to chronic, long-term changes in temperature and dissolved oxygen were investigated. This is a unique investigation due to the duration of the stress events the fish were exposed to. Health and haematological parameters were analysed alongside gene expression results to determine the effects of thermal stress on Chinook salmon. Six copies of heat shock protein 90 (HSP90) were discovered and characterised: HSP90AA1.1a, HSP90AA1.2a, HSP90AA1.1b, HSP90AA1.2b, HSP90AB1a and HSP90AB1b, as well as two copies of SOD1, named SOD1a and SOD1b. The amino acid sequences contained features similar to those found in other vertebrate HSP90 and SOD1 sequences, and the phylogenetic tree and synteny analysis provided conclusive evidence of their relationship to other vertebrate HSP90 and SOD1 genes. Primers were designed for qPCR to enable the expression of all copies of HSP90 and SOD1 to be analysed. The expression studies showed that HSP90 and SOD1 were downregulated in the liver and spleen in response to longer term exposure to high temperatures and lower dissolved oxygen. HSP90 was also downregulated in the gill; however, the results for SOD1 expression in the gill were not conclusive. This study provides important insights into the physiological and genetic responses of Chinook salmon to temperature and oxygen stress, which are critical for developing sustainable fish aquaculture in an era of changing global climates.

12.
J Aquat Anim Health ; 35(4): 280-285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872816

RESUMO

OBJECTIVE: We explore apparent infection of Salmincola californiensis arising during investigations involving this lernaeopodid copepod parasitic on Pacific salmon and trout Oncorhynchus spp. METHODS: We noted occasional unusual coloration of adult female copepods collected from the wild. These females were bright blue and pink in contrast to the cream white coloration characteristic of the copepod. We also observed that similar color patterns developed under laboratory settings when copepod eggs were held for hatching. In paired egg cases, we found consistent hatching failure of blue and pink eggs and patterns in apparent disease development that would be consistent with both vertical and horizontal transmission. RESULT: Attempts to identify the cause of the apparent infection using genetic methods and transmission electron microscopy were inconclusive. CONCLUSION: Iridovirus infection was initially suspected, but bacterial infection is also plausible. This apparent reduced hatching success of S. californiensis warrants further exploration as it could reduce local abundances. Given the potential importance of a disease impacting this copepod, a parasite that itself affects endangered and commercially important Pacific salmon and trout, future research would benefit from clarification of the apparent infection through additional sequencing, primer development, visualization, and exploration into specificity and transmission.


Assuntos
Copépodes , Doenças dos Peixes , Oncorhynchus , Parasitos , Feminino , Animais , Truta/parasitologia , Água Doce , Doenças dos Peixes/parasitologia
13.
Artigo em Inglês | MEDLINE | ID: mdl-37634278

RESUMO

Production of sterile fishes through artificial retention of a third set of chromosomes (triploidy) is a sustainable alternative for aquaculture since it reduces escapee pressure on wild populations. However, these fishes have reduced survival in stressful conditions and in response to infection. In this study, the impact of Vibrio anguillarum infection on diploid and triploid Chinook salmon (Oncorhynchus tshawytscha) was investigated to identify if there was any significant immune regulation by microRNAs (miRNA). Small RNAs from hindgut, head kidney, and spleen were sequenced to determine if miRNA transcript abundance was altered due to ploidy and infection in nine-month old full-sibling diploids and triploids. All three tissues had differentially expressed miRNA prior to infection, indicating subtle changes in epigenetic regulation due to increased ploidy. Additionally, miRNA were altered by infection, but there was only a difference in spleen miRNA expression between diploids and triploids at three days of infection. Furthermore, one miRNA (ssa-miR-2188-3p) was confirmed as having an altered response to infection in triploids compared to diploids, implicating potential immune dysregulation due to increased ploidy. The miRNAs identified in this study are predicted to target immune pathways, providing evidence for their importance in regulating responses to pathogens. This study is the first to investigate how increased ploidy alters miRNA expression in response to infection. Additionally, it provides evidence for epigenetic dysregulation in triploid fishes, which may contribute to their poor performance in response to stress.


Assuntos
MicroRNAs , Vibrioses , Animais , Triploidia , Diploide , Salmão/genética , MicroRNAs/genética , Epigênese Genética , Vibrioses/genética , Vibrioses/veterinária
14.
Conserv Physiol ; 11(1): coad066, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649642

RESUMO

This study investigated how the deployment of juvenile Chinook salmon in ambient river conditions and the subsequent exposure to and infection by pathogens was associated with the changes in the expression of genes involved in immune system functioning, general stress and host development. Juvenile fish were deployed in sentinel cages for 21 days in the Sacramento River, CA, USA. Gill, kidney and intestinal tissue were sampled at 0, 7, 14 and 21 days post-deployment. Pathogen detection and host response were assessed by a combination of molecular and histopathological evaluation. Our findings showed that fish became infected by the parasites Ceratonova shasta, Parvicapsula minibicornis and Ichthyophthirius multifiliis, and to a lesser extent, the bacteria Flavobacterium columnare and Rickettsia-like organisms. Co-infection was common among sentinel fish. Expression of investigated genes was altered following deployment and was often associated with pathogen abundance. This study provides a foundation for future avenues of research investigating pathogens that affect out-migrating Chinook salmon in the Sacramento River, and offers crucial knowledge related to conservation efforts.

15.
Conserv Physiol ; 11(1): coad046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425483

RESUMO

Blood plasma analyses can provide researchers, aquaculture facilities and fisheries managers with valuable insights into the physiological state and welfare of fish. For example, glucose and lactate are part of the secondary stress response system, and elevated concentrations are indicators of stress. However, analysing blood plasma in the field can be logistically difficult and typically involves sample storage and transport to quantify concentrations in a laboratory setting. Portable glucose and lactate meters offer an alternative to laboratory assays and have shown to be relatively accurate in fish, but these tools have only been validated for a few fish species. The objective of this study was to investigate if portable meters could be reliably used in Chinook salmon (Oncorhynchus tshawytscha). As part of a larger stress response study, juvenile Chinook salmon (157 ± 17 mm fork length [mean ± standard deviation; SD]) were exposed to stress-inducing treatments and sampled for blood. Laboratory reference glucose concentrations (milligrams per deciliter; mg/dl; n = 70) were positively correlated with the Accu-Check Aviva meter (Roche Diagnostics, Indianapolis, IN) measurements (R2 = 0.79), although glucose values were 1.21 ± 0.21 (mean ± SD) times higher in the laboratory than with the portable meter. Lactate concentrations (milliMolar; mM; n = 52) of the laboratory reference were also positively correlated (R2 = 0.76) with the Lactate Plus meter (Nova Biomedical, Waltham, MA) and were 2.55 ± 0.50 times higher than portable meter. Our results indicate both meters could be used to measure relative glucose and lactate concentrations in Chinook salmon and provide fisheries professionals with a valuable tool, particularly in remote field settings.

16.
J Fish Biol ; 103(5): 1003-1014, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37410553

RESUMO

Fed aquaculture is one of the fastest-growing and most valuable food production industries in the world. The efficiency with which farmed fish convert feed into biomass influences both environmental impact and economic revenue. Salmonid species, such as king salmon (Oncorhynchus tshawytscha), exhibit high levels of plasticity in vital rates such as feed intake and growth rates. Accurate estimations of individual variability in vital rates are important for production management. The use of mean trait values to evaluate feeding and growth performance can mask individual-level differences that potentially contribute to inefficiencies. Here, the authors apply a cohort integral projection model (IPM) framework to investigate individual variation in growth performance of 1625 individually tagged king salmon fed one of three distinct rations of 60%, 80%, and 100% satiation and tracked over a duration of 276 days. To capture the observed sigmoidal growth of individuals, they compared a nonlinear mixed-effects (logistic) model to a linear model used within the IPM framework. Ration significantly influenced several aspects of growth, both at the individual and at the cohort level. Mean final body mass and mean growth rate increased with ration; however, variance in body mass and feed intake also increased significantly over time. Trends in mean body mass and individual body mass variation were captured by both logistic and linear models, suggesting the linear model to be suitable for use in the IPM. The authors also observed that higher rations resulted in a decreasing proportion of individuals reaching the cohort's mean body mass or larger by the end of the experiment. This suggests that, in the present experiment, feeding to satiation did not produce the desired effects of efficient, fast, and uniform growth in juvenile king salmon. Although monitoring individuals through time is challenging in commercial aquaculture settings, recent technological advances combined with an IPM approach could provide new scope for tracking growth performance in experimental and farmed populations. Using the IPM framework might allow the exploration of other size-dependent processes affecting vital rate functions, such as competition and mortality.


Assuntos
Salmão , Salmonidae , Humanos , Animais , Ingestão de Alimentos , Aquicultura
17.
Conserv Physiol ; 11(1): coad022, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152448

RESUMO

Climate change is causing large declines in many Pacific salmon populations. In particular, warm rivers are associated with high levels of premature mortality in migrating adults. The Fraser River watershed in British Columbia, Canada, supports some of the largest Chinook salmon (Oncorhynchus tshawytscha) runs in the world. However, the Fraser River is warming at a rate that threatens these populations at critical freshwater life stages. A growing body of literature suggests salmonids are locally adapted to their thermal migratory experience, and thus, population-specific thermal performance information can aid in management decisions. We compared the thermal performance of pre-spawning adult Chinook salmon from two populations, a coastal fall-run from the Chilliwack River (125 km cooler migration) and an interior summer-run from the Shuswap River (565 km warmer migration). We acutely exposed fish to temperatures reflecting current (12°C, 18°C) and future projected temperatures (21°C, 24°C) in the Fraser River and assessed survival, aerobic capacity (resting and maximum metabolic rates, absolute aerobic scope (AAS), muscle and ventricle citrate synthase), anaerobic capacity (muscle and ventricle lactate dehydrogenase) and recovery capacity (post-exercise metabolism, blood physiology, tissue lactate). Chilliwack Chinook salmon performed worse at high temperatures, indicated by elevated mortality, reduced breadth in AAS, enhanced plasma lactate and potassium levels and elevated tissue lactate concentrations compared with Shuswap Chinook salmon. At water temperatures exceeding the upper pejus temperatures (Tpejus, defined here as 80% of maximum AAS) of Chilliwack (18.7°C) and Shuswap (20.2°C) Chinook salmon populations, physiological performance will decline and affect migration and survival to spawn. Our results reveal population differences in pre-spawning Chinook salmon performance across scales of biological organization at ecologically relevant temperatures. Given the rapid warming of rivers, we show that it is critical to consider the intra-specific variation in thermal physiology to assist in the conservation and management of Pacific salmon.

18.
Ecol Evol ; 13(5): e10087, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37234292

RESUMO

Individual variation in life-history traits can have important implications for the ability of populations to respond to environmental variability and change. In migratory animals, flexibility in the timing of life-history events, such as juvenile emigration from natal areas, can influence the effects of population density and environmental conditions on habitat use and population dynamics. We evaluated the functional relationships between population density and environmental covariates and the abundance of juveniles expressing different life-history pathways in a migratory fish, Chinook salmon (Oncorhynchus tshawytscha), in the Wenatchee River basin in Washington State, USA. We found that the abundance of younger emigrants from natal streams was best described by an accelerating or near-linear function of spawners, whereas the abundance of older emigrants was best described by a decelerating function of spawners. This supports the hypothesis that emigration timing varies in response to density in natal areas, with younger-emigrating life-history pathways comprising a larger proportion of emigrants when densities of conspecifics are high. We also observed positive relationships between winter stream discharge and abundance of younger emigrants, supporting the hypothesis that habitat conditions can also influence the prevalence of different life-history pathways. Our results suggest that early emigration, and a resultant increase in the use of downstream rearing habitats, may increase at higher population densities and with greater winter precipitation. Winter precipitation is projected to increase in this system due to climate warming. Characterizing relationships between life-history prevalence and environmental conditions may improve our understanding of species habitat requirements and is a first step in understanding the dynamics of species with diverse life-history strategies. As environmental conditions change-due to climate change, management, or other factors-resultant life-history changes are likely to have important demographic implications that will be challenging to predict when life-history diversity is not accounted for in population models.

19.
Fish Shellfish Immunol ; 137: 108739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37061071

RESUMO

Fish skin is critical to physical defence against pathogens and there is a need to understand the physiological processes impacting ulcers and their healing. Ulcers have been reported in farmed Chinook salmon in New Zealand. This study investigated stress, immune and structural gene expression in farmed Chinook salmon skin with and without ulcers from two sites in New Zealand sampled from February (higher temperature, late summer) to May (lower temperature, late autumn). Skin samples taken adjacent to non-specific ulcers in May and control fish in February demonstrated upregulation of heat shock protein 70 relative to control fish in May. Anterior gradient 2 expression was upregulated in fish with ulcers relative to control fish (both February and May), suggesting increased mucous cell activity. Based on the results of this study, fish with non-specific ulcers showed evidence of stress, inflammation, re-epithelisation, and delayed healing near the ulcer site, elucidating the importance of these processes in the pathogenesis of non-specific ulcers in farmed chinook salmon.


Assuntos
Doenças dos Peixes , Salmão , Animais , Salmão/genética , Úlcera , Inflamação/genética , Inflamação/veterinária , Nova Zelândia , Doenças dos Peixes/patologia
20.
Animals (Basel) ; 13(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36830380

RESUMO

Genetic diversity plays a vital role in the adaptability of salmon to changing environmental conditions that can introduce new selective pressures on populations. Variability among local subpopulations may increase the chance that certain advantageous genes are passed down to future generations to mitigate susceptibility to novel diseases, warming oceans, loss of genetic stocks, and ocean acidification. Class I and II genes of the major histocompatibility complex (MHC) are crucial for the fitness of Chinook salmon due to the role they play in disease and pathogen resistance. The objective of this study was to assess the DNA sequence variability among wild and hatchery populations of Alaskan Chinook salmon at the class I α1 and class II ß1 exons of the MHC. We hypothesized that the 96 wild samples taken from the Deshka River would display greater levels of observed heterozygosity (Ho) relative to expected heterozygosity (He) in suggesting that individuals with similar phenotypes mate with one another more frequently than would be expected under random mating patterns. Conversely, since no mate selection occurs in the William Jack Hernandez Sport Fish hatchery, we would not expect to see this discrepancy (He = Ho) in the 96 hatchery fish tested in this study. Alternatively, we hypothesized that post-mating selection is driving higher levels of observed heterozygosity as opposed to mate selection. If this is the case, we will observe higher than expected levels of heterozygosity among hatchery salmon. Both populations displayed higher levels of observed heterozygosity than expected heterozygosity at the Class I and II loci but genetic differentiation between the spatially distinct communities was minimal. Class I sequences showed evidence of balancing selection, despite high rates of non-synonymous substitutions observed, specifically at the peptide binding regions of both MHC genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA