Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 894: 147971, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37949417

RESUMO

Saponins derived from holothurians have high potential medicinal value. However, the de novo synthesis of the derivatization of triterpenes is still unclear. Oxidative squalene cyclase (OSC) can catalyze 2,3-Oxidosqualene into diverse products that serve as important precursors for triterpene synthesis. However, the function of theOSCgene in Chiridotasp. hasnot been elucidated. In this study, an OSCgenederived from the deep-sea holothurianChiridota sp. was cloned and characterized functionally in a yeast system. The open reading frame of the OSC gene was 2086 bp, which encoded 695 amino acids. The Chiridota sp. OSC gene has a similarity of 66.89 % to the OSC of other holothurian species and 63.51 % to that of Acanthaster planci. The phylogenetic tree showed that the echinozoan OSCsclustered together, and then they formeda sister group to fungi and plant homologs. Chiridota sp. OSC catalyzed 2,3-Oxidosqualene into parkeol.Under high pressure, the relative enzymatic activity and stability of cyclase inChiridota sp. was higher than that in the shallow-sea holothurianStichopus horrens. The newly cloned OSC of Chiridota sp.provideskey information for the interpretation of the saponin synthesis pathway in deep-sea holothurians.


Assuntos
Transferases Intramoleculares , Triterpenos , Filogenia , Triterpenos/metabolismo , Clonagem Molecular , Estresse Oxidativo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA