Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1393237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050893

RESUMO

In animals, pigments but also nanostructures determine skin coloration, and many shades are produced by combining both mechanisms. Recently, we discovered a new mechanism for blue coloration in the ribbontail stingray Taeniura lymma, a species with electric blue spots on its yellow-brown skin. Here, we characterize finescale differences in cell composition and architecture distinguishing blue from non-blue regions, the first description of elasmobranch chromatophores and the nanostructures responsible for the stingray's novel structural blue, contrasting with other known mechanisms for making nature's rarest color. In blue regions, the upper dermis comprised a layer of chromatophore units -iridophores and melanophores entwined in compact clusters framed by collagen bundles- this structural stability perhaps the root of the skin color's robustness. Stingray iridophores were notably different from other vertebrate light-reflecting cells in having numerous fingerlike processes, which surrounded nearby melanophores like fists clenching a black stone. Iridophores contained spherical iridosomes enclosing guanine nanocrystals, suspended in a 3D quasi-order, linked by a cytoskeleton of intermediate filaments. We argue that intermediate filaments form a structural scaffold with a distinct optical role, providing the iridosome spacing critical to produce the blue color. In contrast, black-pigmented melanosomes within melanophores showed space-efficient packing, consistent with their hypothesized role as broadband-absorbers for enhancing blue color saturation. The chromatophore layer's ultrastructure was similar in juvenile and adult animals, indicating that skin color and perhaps its ecological role are likely consistent through ontogeny. In non-blue areas, iridophores were replaced by pale cells, resembling iridophores in some morphological and nanoscale features, but lacking guanine crystals, suggesting that the cell types arise from a common progenitor cell. The particular cellular associations and structural interactions we demonstrate in stingray skin suggest that pigment cells induce differentiation in the progenitor cells of iridophores, and that some features driving color production may be shared with bony fishes, although the lineages diverged hundreds of millions of years ago and the iridophores themselves differ drastically.

2.
Curr Opin Neurobiol ; 86: 102876, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652980

RESUMO

The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain. During camouflage, cephalopods recreate on their skin an approximation of what they see, providing a window into perceptual processes in the brain. Additionally, cephalopods communicate their internal state during social encounters using innate skin patterns, and create waves of pigmentation on their skin during periods of arousal. Thus, by leveraging the visual displays of cephalopods, we can gain insight into how the external world is represented in the brain and how this representation is transformed into a recapitulation of the world on the skin. Here, we describe the rich skin behaviors of the coleoid cephalopods, what is known about cephalopod neuroanatomy, and how advancements in gene editing, machine learning, optical imaging, and electrophysiological tools may provide an opportunity to explore the neural bases of these fascinating behaviors.


Assuntos
Cefalópodes , Animais , Comportamento Animal , Encéfalo/fisiologia , Cefalópodes/fisiologia , Pele , Fenômenos Fisiológicos da Pele
3.
Methods Mol Biol ; 2776: 3-20, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502495

RESUMO

The emergence of thylakoid membranes in cyanobacteria is a key event in the evolution of all oxygenic photosynthetic cells, from prokaryotes to eukaryotes. Recent analyses show that they could originate from a unique lipid phase transition rather than from a supposed vesicular budding mechanism. Emergence of thylakoids coincided with the great oxygenation event, more than two billion years ago. The acquisition of semi-autonomous organelles, such as the mitochondrion, the chloroplast, and, more recently, the chromatophore, is a critical step in the evolution of eukaryotes. They resulted from primary endosymbiotic events that seem to share general features, i.e., an acquisition of a bacterium/cyanobacteria likely via a phagocytic membrane, a genome reduction coinciding with an escape of genes from the organelle to the nucleus, and, finally, the appearance of an active system translocating nuclear-encoded proteins back to the organelles. An intense mobilization of foreign genes of bacterial origin, via horizontal gene transfers, plays a critical role. Some third partners, like Chlamydia, might have facilitated the transition from cyanobacteria to the early chloroplast. This chapter further details our current understanding of primary endosymbiosis, focusing on primary chloroplasts, thought to have appeared over a billion years ago, and the chromatophore, which appeared around a hundred years ago.


Assuntos
Cromatóforos , Cianobactérias , Tilacoides/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Eucariotos , Simbiose/genética
4.
Acta Biomater ; 179: 207-219, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513724

RESUMO

Despite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FOF1-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FOF1-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized. Specifically, two microfluidic platforms (laminar flow microchip and tumor microenvironment (TME) microchip) were designed and developed to fully investigate the motility, tumor-accumulation ability and endocytosis of the chromatophore nanorobot (CN). The results from the laminar flow microchip indicated that the obtained CN possessed the strongly positive chemotaxis towards protons. And the TME microchip experiments verified that the CN had a desirable tumor-accumulation ability. Cellular uptake experiments demonstrated that the CN efficiently promoted the endocytosis of the fluorescence DiO into the HT-29 cells. And the in vivo studies revealed that the intravenously administered CN exhibited vigorous tumor-targetability and accumulation ability as well as highly efficient antitumor efficacy. All the results suggested that FOF1-ATPase motors-embedded CN could be promising nanomachines with powerful self-propulsion for overcoming physiological barriers and tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that FOF1-ATPase-embedded chromatophore nanorobots exhibit a strong proton chemotaxis, which not only plays a key role in tumor-targetability and accumulation, but also promotes tumor tissue penetration and internalization. The results of in vitro and in vivo studies indicated that drug-loaded chromatophore nanorobots are capable to simultaneously accomplish tumor-targeting, accumulation, penetration and internalization for enhanced tumor therapy. Our study provides a fundamental basis for further study on FOF1-ATPase-embedded chromatophore as tumor-targeting drug delivery systems that have promising clinical applications. It offers a new and more efficient delivery vehicle for cancer related therapeutics.


Assuntos
Endocitose , Humanos , Animais , Endocitose/efeitos dos fármacos , Células HT29 , Camundongos , ATPases Translocadoras de Prótons/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Robótica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio
5.
J Photochem Photobiol B ; 252: 112861, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335869

RESUMO

Body-color changes in many poikilothermic animals can occur quickly. This color change is generally initiated by visual system, followed by neuromuscular or neuroendocrine control. We have previously showed that the ventral skin color of the large yellow croaker (Larimichthys crocea) presents golden yellow in dark environment and quickly changes to silvery white in light environment. In the present study, we found that the light-induced whitening of ventral skin color was independent of visual input. Using light-emitting diode sources of different wavelength with same luminance (150 lx) but different absolute irradiance (0.039-0.333 mW/cm2), we further found that the blue light (λmax = 480 nm, 0.107 mW/cm2) is more effectively in induction of whitening of ventral skin color in compare with other light sources. Interestingly, the result of RT-PCR showed opsin 3 transcripts expressed in xanthophores. Recombinant protein of Opsin 3 with 11-cis retinal formed functional blue-sensitive pigment, with an absorption maximum at 468 nm. The HEK293T cells transfected with Opsin 3 showed a blue light-evoked Ca2+ response. Knock-down of Opsin 3 expression blocked the light-induced xanthosomes aggregation in vitro. Moreover, the light-induced xanthosomes aggregation was mediated via Ca2+-PKC and Ca2+-CaMKII pathways, and relied on microtubules and dynein. Decrease of cAMP levels was a prerequisite for xanthosomes aggregation. Our results provide a unique organism model exhibiting light-induced quick body color change, which was independent of visual input but rather rely on non-visual function of Opsin 3 within xanthophore.


Assuntos
Peixes , Pele , Humanos , Animais , Células HEK293 , Pele/metabolismo , Peixes/metabolismo , Opsinas/metabolismo , Luz
6.
PeerJ ; 11: e16248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077425

RESUMO

The threespine stickleback (Gasterosteus aculeatus) is an important model for studying the evolution of nuptial coloration, but histological analyses of color are largely lacking. Previous analyses of one nuptial coloration trait, orange-red coloration along the body, have indicated carotenoids are the main pigment producing this color. In addition, recent gene expression studies found variation in the correlates of throat coloration between the sexes and between populations, raising the possibility of variation in the mechanisms underlying superficially similar coloration. We used transmission electron microscopy (TEM) to investigate the histological correlates of color in the throat dermal tissue of threespine stickleback from Western North America, within and between sexes, populations, and ecotypes. Ultrastructural analysis revealed carotenoid-containing erythrophores to be the main chromatophore component associated with orange-red coloration in both males and females across populations. In individuals where some darkening of the throat tissue was present, with no obvious orange-red coloration, erythrophores were not detected. Melanophore presence was more population-specific in expression, including being the only chromatophore component detected in a population of darker fish. We found no dermal chromatophore units within colorless throat tissue. This work confirms the importance of carotenoids and the erythrophore in producing orange-red coloration across sexes, as well as melanin within the melanophore in producing darkened coloration, but does not reveal broad histological differences among populations with similar coloration.


Assuntos
Cromatóforos , Smegmamorpha , Feminino , Masculino , Animais , Faringe , Smegmamorpha/genética , Peixes , Carotenoides
7.
Development ; 150(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823232

RESUMO

Neural crest cells generate numerous derivatives, including pigment cells, and are a model for studying how fate specification from multipotent progenitors is controlled. In mammals, the core gene regulatory network for melanocytes (their only pigment cell type) contains three transcription factors, Sox10, Pax3 and Mitf, with the latter considered a master regulator of melanocyte development. In teleosts, which have three to four pigment cell types (melanophores, iridophores and xanthophores, plus leucophores e.g. in medaka), gene regulatory networks governing fate specification are poorly understood, although Mitf function is considered conserved. Here, we show that the regulatory relationships between Sox10, Pax3 and Mitf are conserved in zebrafish, but the role for Mitf is more complex than previously emphasized, affecting xanthophore development too. Similarly, medaka Mitf is necessary for melanophore, xanthophore and leucophore formation. Furthermore, expression patterns and mutant phenotypes of pax3 and pax7 suggest that Pax3 and Pax7 act sequentially, activating mitf expression. Pax7 modulates Mitf function, driving co-expressing cells to differentiate as xanthophores and leucophores rather than melanophores. We propose that pigment cell fate specification should be considered to result from the combinatorial activity of Mitf with other transcription factors.


Assuntos
Oryzias , Peixe-Zebra , Animais , Redes Reguladoras de Genes , Mamíferos/genética , Melanócitos/metabolismo , Mutação , Crista Neural/metabolismo , Oryzias/genética , Oryzias/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Ecol Evol ; 13(7): e10293, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37435020

RESUMO

Dynamic colour change is widespread in ectothermic animals, but has primarily been studied in the context of background matching. For most species, we lack quantitative data on the extent of colour change across different contexts. It is also unclear whether and how colour change varies across body regions, and how overall sexual dichromatism relates to the extent of individual colour change. In this study, we obtained reflectance measures in response to different stimuli for males and females of six species of agamid lizards (Agamidae, sister family to Chameleonidae) comprising three closely related species pairs. We computed the colour volume in a lizard-vision colour space occupied by males and females of each species and estimated overall sexual dichromatism based on the area of non-overlapping male and female colour volumes. As expected, males had larger colour volumes than females, but the extent of colour change in males differed between species and between body regions. Notably, species that were most sexually dichromatic were not necessarily those in which males showed the greatest individual colour change. Our results indicate that the extent of colour change is independent of the degree of sexual dichromatism and demonstrate that colour change on different body regions can vary substantially even between pairs of closely related species.

9.
Curr Biol ; 33(13): 2794-2801.e3, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343557

RESUMO

The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied marine mollusks that exhibit an array of interesting biological phenomena, including dynamic camouflage, complex social behaviors, prehensile regenerating arms, and large brains capable of learning, memory, and problem-solving.1,2,3,4,5,6,7,8,9,10 The dwarf cuttlefish, Sepia bandensis, is a promising model cephalopod species due to its small size, substantial egg production, short generation time, and dynamic social and camouflage behaviors.11 Cuttlefish dynamically camouflage to their surroundings by changing the color, pattern, and texture of their skin. Camouflage is optically driven and is achieved by expanding and contracting hundreds of thousands of pigment-filled saccules (chromatophores) in the skin, which are controlled by motor neurons emanating from the brain. We generated a dwarf cuttlefish brain atlas using magnetic resonance imaging (MRI), deep learning, and histology, and we built an interactive web tool (https://www.cuttlebase.org/) to host the data. Guided by observations in other cephalopods,12,13,14,15,16,17,18,19,20 we identified 32 brain lobes, including two large optic lobes (75% the total volume of the brain), chromatophore lobes whose motor neurons directly innervate the chromatophores of the color-changing skin, and a vertical lobe that has been implicated in learning and memory. The brain largely conforms to the anatomy observed in other Sepia species and provides a valuable tool for exploring the neural basis of behavior in the experimentally facile dwarf cuttlefish.


Assuntos
Cromatóforos , Sepia , Animais , Sepia/fisiologia , Decapodiformes , Encéfalo , Cromatóforos/fisiologia , Pigmentação da Pele
10.
G3 (Bethesda) ; 13(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37191439

RESUMO

Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype. We propose that these phenotypes are caused by loss of specialized color cells (chromatophores), with loss ranging from severe (fully white) to moderate (dorsal striping) to mild (subtle changes in patterning). Our study is the first to describe variants affecting endothelin signaling in a nonavian reptile and suggests that reductions in endothelin signaling in ball pythons can produce a variety of color phenotypes, depending on the degree of color cell loss.


Assuntos
Boidae , Animais , Mutação de Sentido Incorreto , Endotelinas
11.
Pigment Cell Melanoma Res ; 36(5): 416-422, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37253924

RESUMO

In whitish parts of teleost skin, the coloration is attributed to a light scattering phenomenon within light-reflecting chromatophores, namely leucophores and iridophores, which contain high refractive index materials in their cytoplasmic organelles, leucosomes and light-reflecting platelets, respectively. Previous chemical examinations revealed that guanine is a major constituent of the materials in the platelets of the iridophores, while, in leucophores, the detailed chemical nature of the materials contained in the leucosomes has not been reported. Here, using liquid chromatography-tandem mass spectroscopy, we investigated the chemical features of materials eluted from scales, larvae, and single chromatophores of the medaka. Results of the liquid chromatography-tandem mass spectroscopy suggested that uric acid is a major constituent of the high refractive index materials in medaka leucophores and is a unique marker to investigate the presence of leucophores in the fish. The whitish appearance of the medaka leucophores may be attributed to the light-scattering phenomenon in leucosomes, which contain highly concentrated uric acid.


Assuntos
Cromatóforos , Oryzias , Animais , Ácido Úrico , Pigmentação da Pele , Pele
12.
Proc Natl Acad Sci U S A ; 120(18): e2215193120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37104475

RESUMO

Many animals undergo changes in functional colors during development, requiring the replacement of integument or pigment cells. A classic example of defensive color switching is found in hatchling lizards, which use conspicuous tail colors to deflect predator attacks away from vital organs. These tail colors usually fade to concealing colors during ontogeny. Here, we show that the ontogenetic blue-to-brown tail color change in Acanthodactylus beershebensis lizards results from the changing optical properties of single types of developing chromatophore cells. The blue tail colors of hatchlings are produced by incoherent scattering from premature guanine crystals in underdeveloped iridophore cells. Cryptic tail colors emerge during chromatophore maturation upon reorganization of the guanine crystals into a multilayer reflector concomitantly with pigment deposition in the xanthophores. Ontogenetic changes in adaptive colors can thus arise not via the exchange of different optical systems, but by harnessing the timing of natural chromatophore development. The incoherent scattering blue color here differs from the multilayer interference mechanism used in other blue-tailed lizards, indicating that a similar trait can be generated in at least two ways. This supports a phylogenetic analysis showing that conspicuous tail colors are prevalent in lizards and that they evolved convergently. Our results provide an explanation for why certain lizards lose their defensive colors during ontogeny and yield a hypothesis for the evolution of transiently functional adaptive colors.


Assuntos
Cromatóforos , Lagartos , Animais , Filogenia , Pigmentação , Pele
13.
Front Physiol ; 14: 1162709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969601

RESUMO

Lately, behavioral ecotoxicology has flourished because of increasing standardization of analyses of endpoints like movement. However, research tends to focus on a few model species, which limits possibilities of extrapolating and predicting toxicological effects and adverse outcomes at the population and ecosystem level. In this regard, it is recommended to assess critical species-specific behavioral responses in taxa playing key roles in trophic food webs, such as cephalopods. These latter, known as masters of camouflage, display rapid physiological color changes to conceal themselves and adapt to their surrounding environments. The efficiency of this process depends on visual abilities and acuity, information processing, and control of chromatophores dynamics through nervous and hormonal regulation with which many contaminants can interfere. Therefore, the quantitative measurement of color change in cephalopod species could be developed as a powerful endpoint for toxicological risk assessment. Based on a wide body of research having assessed the effect of various environmental stressors (pharmaceutical residues, metals, carbon dioxide, anti-fouling agents) on the camouflage abilities of juvenile common cuttlefish, we discuss the relevance of this species as a toxicological model and address the challenge of color change quantification and standardization through a comparative review of the available measurement techniques.

14.
New Phytol ; 234(3): 934-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35211975

RESUMO

Paulinella represents the only known case of an independent primary plastid endosymbiosis, outside Archaeplastida, that occurred c. 120 (million years ago) Ma. These photoautotrophs grow very slowly in replete culture medium with a doubling time of 6-7 d at optimal low light, and are highly sensitive to photodamage under moderate light levels. We used genomic and biophysical methods to investigate the extreme slow growth rate and light sensitivity of Paulinella, which are key to photosymbiont integration. All photosystem II (PSII) genes except psb28-2 and all cytochrome b6 f complex genes except petM and petL are present in Paulinella micropora KR01 (hereafter, KR01). Biophysical measurements of the water oxidation complex, variable chlorophyll fluorescence, and photosynthesis-irradiance curves show no obvious evidence of PSII impairment. Analysis of photoacclimation under high-light suggests that although KR01 can perform charge separation, it lacks photoprotection mechanisms present in cyanobacteria. We hypothesize that Paulinella species are restricted to low light environments because they are deficient in mitigating the formation of reactive oxygen species formed within the photosystems under peak solar intensities. The finding that many photoprotection genes have been lost or transferred to the host-genome during endosymbiont genome reduction, and may lack light-regulation, is consistent with this hypothesis.


Assuntos
Amoeba , Cromatóforos , Amoeba/genética , Luz , Fotossíntese/genética , Complexo de Proteína do Fotossistema II , Filogenia
15.
Front Physiol ; 12: 675252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220538

RESUMO

The speed of adaptive body patterning in coleoid cephalopods is unmatched in the natural world. While the literature frequently reports their remarkable ability to change coloration significantly faster than other species, there is limited research on the temporal dynamics of rapid chromatophore coordination underlying body patterning in living, intact animals. In this exploratory pilot study, we aimed to measure chromatophore activity in response to a light flash stimulus in seven squid, Doryteuthis pealeii. We video-recorded the head/arms, mantle, and fin when squid were presented with a light flash startle stimulus. Individual chromatophores were detected and tracked over time using image analysis. We assessed baseline and response chromatophore surface area parameters before and after flash stimulation, respectively. Using change-point analysis, we identified 4,065 chromatophores from 185 trials with significant surface area changes elicited by the flash stimulus. We defined the temporal dynamics of chromatophore activity to flash stimulation as the latency, duration, and magnitude of surface area changes (expansion or retraction) following the flash presentation. Post stimulation, the response's mean latency was at 50 ms (± 16.67 ms), for expansion and retraction, across all body regions. The response duration ranged from 217 ms (fin, retraction) to 384 ms (heads/arms, expansion). While chromatophore expansions had a mean surface area increase of 155.06%, the retractions only caused a mean reduction of 40.46%. Collectively, the methods and results described contribute to our understanding of how cephalopods can employ thousands of chromatophore organs in milliseconds to achieve rapid, dynamic body patterning.

16.
Genes (Basel) ; 12(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071987

RESUMO

Chloroplasts of plants and algae are currently believed to originate from a cyanobacterial endosymbiont, mainly based on the shared proteins involved in the oxygenic photosynthesis and gene expression system. The phylogenetic relationship between the chloroplast and cyanobacterial genomes was important evidence for the notion that chloroplasts originated from cyanobacterial endosymbiosis. However, studies in the post-genomic era revealed that various substances (glycolipids, peptidoglycan, etc.) shared by cyanobacteria and chloroplasts are synthesized by different pathways or phylogenetically unrelated enzymes. Membranes and genomes are essential components of a cell (or an organelle), but the origins of these turned out to be different. Besides, phylogenetic trees of chloroplast-encoded genes suggest an alternative possibility that chloroplast genes could be acquired from at least three different lineages of cyanobacteria. We have to seriously examine that the chloroplast genome might be chimeric due to various independent gene flows from cyanobacteria. Chloroplast formation could be more complex than a single event of cyanobacterial endosymbiosis. I present the "host-directed chloroplast formation" hypothesis, in which the eukaryotic host cell that had acquired glycolipid synthesis genes as an adaptation to phosphate limitation facilitated chloroplast formation by providing glycolipid-based membranes (pre-adaptation). The origins of the membranes and the genome could be different, and the origin of the genome could be complex.


Assuntos
Clorófitas/genética , Cloroplastos/genética , Cianobactérias/genética , Evolução Molecular , Transferência Genética Horizontal , Peptidoglicano/genética
17.
Methods Mol Biol ; 2302: 335-356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33877636

RESUMO

Molecular dynamics or MD simulation is gradually maturing into a tool for constructing in vivo models of living cells in atomistic details. The feasibility of such models is bolstered by integrating the simulations with data from microscopic, tomographic and spectroscopic experiments on exascale supercomputers, facilitated by the use of deep learning technologies. Over time, MD simulation has evolved from tens of thousands of atoms to over 100 million atoms comprising an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium. In this chapter, we present a step-by-step outline for preparing, executing and analyzing such large-scale MD simulations of biological systems that are essential to life processes. All scripts are provided via GitHub.


Assuntos
Bactérias/citologia , Cromatóforos Bacterianos/química , Biologia Computacional/métodos , Bactérias/química , Aprendizado Profundo , Simulação de Dinâmica Molecular
18.
J Exp Zool B Mol Dev Evol ; 336(5): 393-403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33900043

RESUMO

Japanese flounder are left-right asymmetrical, with features, such as dark, ocular-side specific pigmentation. This pigmentation arises during metamorphic stages, along with the asymmetric differentiation of adult-type chromatophores. Additionally, among juveniles, tank-reared specimens commonly show ectopic pigmentation on their blind sides. In both cases, neural crest-derived Sox10-positive progenitor cells at the dorsal fin base are hypothesized to contribute to chromatophore development. Here, we developed a method to visualize Sox10-positive cells via green fluorescent protein (GFP) fluorescence to directly monitor their migration and differentiation into chromatophores in vivo. Electroporation was applied to introduce GFP reporter vectors into the dorsal fin base of larvae and juveniles. Cre-loxP system vectors were also tested to enable cell labeling even after a decrease in sox10 expression levels. In larvae, undifferentiated Sox10-positive progenitor cells were labeled in the dorsal fin base, whereas newly differentiated adult-type chromatophores were seen dispersed on the ocular side. In juveniles, Sox10-positive cells were identified in the connective tissue of the dorsal fin base and observed prominently in areas of ectopic pigmentation, including several labeled melanophores. Thus, it was suggested that during metamorphic stages, Sox10-positive cells at the dorsal fin base contribute to adult-type chromatophore development, whereas in juveniles, they persist as precursors in the connective tissue, which in response to stimuli migrate to generate ectopic pigmentation. These findings contribute to elucidating pigmentation mechanisms, as well as abnormalities seen in hatchery-reared flounders. The electroporation method may be adapted to diverse animals as an accessible gene transfer method in various research fields, including developmental and biomedical studies.


Assuntos
Cromatóforos/fisiologia , Eletroporação/veterinária , Linguado/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/química , Fatores de Transcrição SOXE/metabolismo , Animais , Diferenciação Celular , Larva/fisiologia , Metamorfose Biológica/fisiologia , Pigmentação/fisiologia , Fatores de Transcrição SOXE/genética
19.
Mol Biol Evol ; 38(2): 344-357, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32790833

RESUMO

Eukaryotic photosynthetic organelles, plastids, are the powerhouses of many aquatic and terrestrial ecosystems. The canonical plastid in algae and plants originated >1 Ga and therefore offers limited insights into the initial stages of organelle evolution. To address this issue, we focus here on the photosynthetic amoeba Paulinella micropora strain KR01 (hereafter, KR01) that underwent a more recent (∼124 Ma) primary endosymbiosis, resulting in a photosynthetic organelle termed the chromatophore. Analysis of genomic and transcriptomic data resulted in a high-quality draft assembly of size 707 Mb and 32,361 predicted gene models. A total of 291 chromatophore-targeted proteins were predicted in silico, 208 of which comprise the ancestral organelle proteome in photosynthetic Paulinella species with functions, among others, in nucleotide metabolism and oxidative stress response. Gene coexpression analysis identified networks containing known high light stress response genes as well as a variety of genes of unknown function ("dark" genes). We characterized diurnally rhythmic genes in this species and found that over 49% are dark. It was recently hypothesized that large double-stranded DNA viruses may have driven gene transfer to the nucleus in Paulinella and facilitated endosymbiosis. Our analyses do not support this idea, but rather suggest that these viruses in the KR01 and closely related P. micropora MYN1 genomes resulted from a more recent invasion.


Assuntos
Amoeba/genética , Cromatóforos , Genomas de Plastídeos , Genoma de Protozoário , Simbiose , Amoeba/metabolismo , Amoeba/virologia , Transcriptoma
20.
Micron ; 140: 102951, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33142190

RESUMO

Diatoms are one of the biofouling species attached to the substrate that can cause substrate corrosion, fuel consumption and destruction of the ecological balance. Therefore, the study of single-cellfouling organisms, particularly, the quantitative analysis of extracellular polymeric substances (EPS) is essential for antifouling. Atomic Force Microscope (AFM) was used to quantify three types of diatoms: Nitzschia closterium (N. closterium), Phaeodactylum tricornutum (P. tricornutum) and Halamphora sp. The situation of N. closterium was analyzed multiple times and the results showed that the adhesion value range of N. closterium with nacked chromatophores was three times larger than the mature one. The discovery of the EPS secretion from chromatophore is discussed in this paper, and the proposed mechanism has special implications to study the adhesive protein. Adhesion capabilities of different diatom genera and species were revealed as well. The average adhesion values of N. closterium, P. tricornutum and Halamphora sp. were about 1.7 nN, 3.3 nN and 2.5 nN, respectively, which suggest P. tricornutum could be a better candidate for testing diatom resistance on epoxy materials in the lab. Experimental data and discussions in this paper provide insights for further study of diatoms in the field of antifouling.


Assuntos
Secreções Corporais/química , Diatomáceas/química , Diatomáceas/fisiologia , Matriz Extracelular de Substâncias Poliméricas/química , Microscopia de Força Atômica/métodos , Adesivos/metabolismo , Diatomáceas/ultraestrutura , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA