Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.200
Filtrar
1.
Front Neuroanat ; 18: 1454746, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39021662

RESUMO

[This corrects the article DOI: 10.3389/fnana.2019.00022.].

2.
Artigo em Inglês | MEDLINE | ID: mdl-38992346

RESUMO

INTRODUCTION: The neural mechanisms underlying neurodegenerative disorders in the elderly remain elusive, despite extensive neuroimaging research in recent decades. Amnestic type mild cognitive impairment (aMCI) and late-life major depressive disorder (MDD) are two such conditions characterized by intersecting cognitive and affective symptomatology, and they are at a higher risk for Alzheimer's disease. MATERIALS AND METHODS: This study analyzed the neural underpinnings of cognitive and depressive symptoms in a cohort comprising 12 aMCI subjects, 24 late-life MDD patients, and 26 healthy controls (HCs). Participants underwent a detailed neuropsychological assessment and completed a visual attentional oddball task during functional magnetic resonance imaging (fMRI), with evaluations at baseline and at 2-year follow-up. RESULTS: Initial findings showed that aMCI subjects had reduced dACC activation during oddball (target) stimulus detection, a pattern that persisted in longitudinal analyses and correlated with cognitive functioning measures. For HCs, subsequent dACC activation was linked to depression scores. Furthermore, in the affective-cognitive altered groups, later dACC activation correlated with oddball and memory performance. CONCLUSIONS: These findings enhance our comprehension of the neurobiological basis of cognitive and depressive disturbances in aging, indicating that dACC activation in response to a visual attentional oddball task could serve as a neural marker for assessing cognitive impairment and depression in conditions predisposing to Alzheimer's disease.

3.
Curr Ther Res Clin Exp ; 101: 100751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045086

RESUMO

Background: There is an urgent need for pharmacological treatment for cocaine (COC) use disorder (CUD). Glutamatergic transmission in the prefrontal cortex is affected by addictive behaviors. Clavulanic acid (CLAV), a glutamate transporter GLT-1 (excitatory amino acid transporter) activator, is a clinical-stage medication that has potential for treating CUD. Methods: In a pilot study, nine participants with CUD received 500 mg CLAV with dose escalations to 750 mg and 1000 mg over 10 days. In 5 separate magnetic resonance imaging (MRI) sessions, brain anterior cingulate cortex (ACC) glutamate level and resting state network (RSN) functional connectivity (FC) were assessed using MR spectroscopy and functional MRI. Craving was assessed at the same time points, between baseline (before CLAV), 6 days, and 10 days of CLAV. Independent component analysis with dual regression was used to identify RSN FC changes from baseline to Days 6 and 10. Relationships among glutamate, craving, and resting state FC values were analyzed. Results: Participants who achieved high ACC glutamate levels after CLAV treatment had robust decreases in COC craving (r = -0.90, P = 0.0009, n = 9). The salience network (SN) and executive control network (ECN) demonstrated an association between increased FC after CLAV treatment and low baseline ACC Glu levels (SN CLAV 750 mg, r = -0.82, P = 0.007) (ECN CLAV 1000 mg, r = -0.667, P = 0.050; n = 9). Conclusions: Glutamate associated changes in craving and FC of the salience and executive control brain networks support CLAV as a potentially efficacious pharmacological treatment for CUD.

4.
CNS Neurosci Ther ; 30(7): e14863, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036868

RESUMO

OBJECTIVE: Childhood sensory abnormalities experience has a crucial influence on the structure and function of the adult brain. The underlying mechanism of neurological function induced by childhood sensory abnormalities experience is still unclear. Our study was to investigate whether the GABAergic neurons in the anterior cingulate cortex (ACC) regulate social disorders caused by childhood sensory abnormalities experience. METHODS: We used two mouse models, complete Freund's adjuvant (CFA) injection mice and bilateral whisker trimming (BWT) mice in childhood. We applied immunofluorescence, chemogenetic and optogenetic to study the mechanism of parvalbumin (PV) neurons and somatostatin (SST) neurons in ACC in regulating social disorders induced by sensory abnormalities in childhood. RESULTS: Inflammatory pain in childhood leads to social preference disorders, while BWT in childhood leads to social novelty disorders in adult mice. Inflammatory pain and BWT in childhood caused an increase in the number of PV and SST neurons, respectively, in adult mice ACC. Inhibiting PV neurons in ACC improved social preference disorders in adult mice that experienced inflammatory pain during childhood. Inhibiting SST neurons in ACC improved social novelty disorders in adult mice that experienced BWT in childhood. CONCLUSIONS: Our study reveals that PV and SST neurons of the ACC may play a critical role in regulating social disorders induced by sensory abnormalities in childhood.


Assuntos
Giro do Cíngulo , Camundongos Endogâmicos C57BL , Parvalbuminas , Somatostatina , Animais , Camundongos , Somatostatina/metabolismo , Masculino , Parvalbuminas/metabolismo , Neurônios GABAérgicos/fisiologia , Adjuvante de Freund/toxicidade , Vibrissas/fisiologia , Vibrissas/inervação , Neurônios , Transtornos do Comportamento Social/etiologia , Camundongos Transgênicos
5.
J Neurochem ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38877776

RESUMO

Irritable bowel syndrome (IBS), which is characterized by chronic abdominal pain, has a high global prevalence. The anterior cingulate cortex (ACC), which is a pivotal region involved in pain processing, should be further investigated regarding its role in the regulation of visceral sensitivity and mental disorders. A C57BL/6J mouse model for IBS was established using chronic acute combining stress (CACS). IBS-like symptoms were assessed using behavioral tests, intestinal motility measurements, and abdominal withdrawal reflex scores. Fluoro-Gold retrograde tracing and immunohistochemistry techniques were employed to investigate the projection of ACC gamma-aminobutyric acid-producing (GABAergic) neurons to the lateral hypothalamus area (LHA). Chemogenetic approaches enabled the selective activation or inhibition of the ACC-LHA GABAergic pathway. Enzyme-linked immunosorbent assay (ELISA) and western blot analyses were conducted to determine the expression of histamine, 5-hydroxytryptamine (5-HT), and transient receptor potential vanilloid 4 (TRPV4). Our findings suggest that CACS induced IBS-like symptoms in mice. The GABA type A receptors (GABAAR) within LHA played a regulatory role in modulating IBS-like symptoms. The chemogenetic activation of ACC-LHA GABAergic neurons elicited anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in normal mice; however, these effects were effectively reversed by the administration of the GABAAR antagonist Bicuculline. Conversely, the chemogenetic inhibition of ACC-LHA GABAergic neurons alleviated anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in the mouse model for IBS. These results highlight the crucial involvement of the ACC-LHA GABAergic pathway in modulating anxiety-like behaviors, intestinal motility alterations, and visceral hypersensitivity, suggesting a potential therapeutic strategy for alleviating IBS-like symptoms.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38890123

RESUMO

BACKGROUND: Alcohol, the most consumed drug in the United States, is associated with various psychological disorders and abnormal personality traits. Despite extensive research on adolescent alcohol consumption, the impact of early alcohol sipping patterns on changes in personality and mental health over time remains unclear. There is also limited information on the latent trajectory of early alcohol sipping, beginning as young as 9-10 years old. The dorsal anterior cingulate cortex (dACC) is crucial for cognitive control and response inhibition. However, the role of the dACC remains unclear in the relationship between early alcohol sipping and mental health outcomes and personality traits over time. METHODS: Utilizing the large data from the Adolescent Brain Cognitive Development study (N = 11,686, 52% males, 52% white, mean [SD] age 119 [7.5] months, 9807 unique families, 22 sites), we aim to comprehensively examine the longitudinal impact of early alcohol sipping patterns on psychopathological measures and personality traits in adolescents, filling crucial gaps in the literature. RESULTS: We identified three latent alcohol sipping groups, each demonstrating distinct personality traits and depression score trajectories. Bilateral dACC activation during the stop-signal task moderated the effect of early alcohol sipping on personality and depression over time. Additionally, bidirectional effects were observed between alcohol sipping and personality traits. CONCLUSIONS: This study provides insights into the impact of early alcohol consumption on adolescent development. The key finding of our analysis is that poor response inhibition at baseline, along with increased alcohol sipping behaviors may accelerate the changes in personality traits and depression scores over time as individuals transition from childhood into adolescence.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38896135

RESUMO

Proton magnetic resonance spectroscopy (1H-MRS) has shown inconsistent alterations in the brain metabolites of individuals with chronic pain. We used 3T 1H-MRS to investigate the brain metabolites in the anterior cingulate cortex and thalamus of 22 patients with chronic mild pain and no gait disturbance and 22 healthy controls. The chronic-pain group included patients with chronic low back pain and/or osteoarthritis but none suffering from hypersensitivity. There were no significant between group-differences in glutamate, glutamate plus glutamine (Glx), N-acetylaspartate, glycerophosphorylcholine (GPC), glutamine, creatine plus phosphocreatine, or myo-inositol in the anterior cingulate cortex, but the patients showed a significant decrease in GPC, but not other metabolites, in the thalamus compared to the controls. The GPC values in the patients' thalamus were significantly correlated with pain components on the Short-Form McGill Pain Questionnaire (SF-MPQ-2) and affective empathy components on the Questionnaire of Cognitive and Affective Empathy (QCAE). The GPC in the patients' anterior cingulate cortex showed significant correlations with cognitive empathy components on the QCAE. Myo-inositol in the controls' anterior cingulate cortex and Glx in the patients' thalamus each showed significant relationships with peripheral responsivity on the QCAE. These significances were not significant after Bonferroni corrections. These preliminary findings indicate important roles of GPC, myo-inositol, and Glx in the brain of patients with chronic mild pain.

8.
Psychiatry Res Neuroimaging ; 342: 111848, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896910

RESUMO

The purpose of this study was to assess the functional connectivity of the posterior cingulate cortex in autism spectrum disorder (ASD). We used resting-state functional magnetic resonance imaging (rsfMRI) brain scans of adolescents diagnosed with ASD and a neurotypical control group. The Autism Brain Imaging Data Exchange (ABIDE) consortium was utilized to acquire data from the University of Michigan (145 subjects) and data from the New York University (183 subjects). The posterior cingulate cortex showed reduced connectivity with the anterior cingulate cortex for the ASD group compared to the control group. These two brain regions have previously both been linked to ASD symptomology. Specifically, the posterior cingulate cortex has been associated with behavioral control and executive functions, which appear to be responsible for the repetitive and restricted behaviors (RRB) in ASD. Our findings support previous data indicating a neurobiological basis of the disorder, and the specific functional connectivity changes involving the posterior cingulate cortex and anterior cingulate cortex may be a potential neurobiological biomarker for the observed RRBs in ASD.


Assuntos
Transtorno do Espectro Autista , Giro do Cíngulo , Imageamento por Ressonância Magnética , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Masculino , Adolescente , Feminino , Criança , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem
9.
Neuroimage ; 297: 120713, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944171

RESUMO

Research indicates that hearing loss significantly contributes to tinnitus, but it alone does not fully explain its occurrence, as many people with hearing loss do not experience tinnitus. To identify a secondary factor for tinnitus generation, we examined a unique dataset of individuals with intermittent chronic tinnitus, who experience fluctuating periods of tinnitus. EEGs of healthy controls were compared to EEGs of participants who reported perceiving tinnitus on certain days, but no tinnitus on other days.. The EEG data revealed that tinnitus onset is associated with increased theta activity in the pregenual anterior cingulate cortex and decreased theta functional connectivity between the pregenual anterior cingulate cortex and the auditory cortex. Additionally, there is increased alpha effective connectivity from the dorsal anterior cingulate cortex to the pregenual anterior cingulate cortex. When tinnitus is not perceived, differences from healthy controls include increased alpha activity in the pregenual anterior cingulate cortex and heightened alpha connectivity between the pregenual anterior cingulate cortex and auditory cortex. This suggests that tinnitus is triggered by a switch involving increased theta activity in the pregenual anterior cingulate cortex and decreased theta connectivity between the pregenual anterior cingulate cortex and auditory cortex, leading to increased theta-gamma cross-frequency coupling, which correlates with tinnitus loudness. Increased alpha activity in the dorsal anterior cingulate cortex correlates with distress. Conversely, increased alpha activity in the pregenual anterior cingulate cortex can transiently suppress the phantom sound by enhancing theta connectivity to the auditory cortex. This mechanism parallels chronic neuropathic pain and suggests potential treatments for tinnitus by promoting alpha activity in the pregenual anterior cingulate cortex and reducing alpha activity in the dorsal anterior cingulate cortex through pharmacological or neuromodulatory approaches.

10.
Clin Neurol Neurosurg ; 243: 108394, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908321

RESUMO

AIM: Advanced neuroimaging strategies may provide new insights into the underlying mechanisms of trigeminal neuralgia (TN). The objective of this study is to measure central pain centers in patients with long-standing trigeminal neuralgia and compare them to those of normal individuals. The findings of this study could improve the understanding of central region changes related to pain and improve the diagnosis and management of chronic trigeminal pain. MATERIAL AND METHODS: We examined radiologic data from 20 patients with trigeminal neuralgia and 28 healthy controls who underwent 3D iso T1-weighted brain MRI at our university hospital between 2018 and 2023. Patients with a minimum pain duration of 5 years were included and compared with healthy controls. Additionally, patients were categorized into groups based on the presence of vascular compression. The pain-related subcortical structures, such as the cingulate cortex and insula, were analyzed volumetrically using volBrain software. The results were evaluated statistically. RESULTS: Significant differences were observed in the measurement of the posterior insula (p = 0.014) when comparing patients with trigeminal neuralgia and healthy subjects. Additionally, group comparisons based on the presence of vascular compression revealed significant differences in the Middle Cingulate Cortex (0.036) and Posterior Cingulate Cortex (0.031) between groups, which may be related to the etiological factor. CONCLUSION: Understanding changes in central regions related to pain can aid in the diagnosis and management of chronic trigeminal pain.


Assuntos
Giro do Cíngulo , Imageamento por Ressonância Magnética , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Giro do Cíngulo/diagnóstico por imagem , Idoso , Adulto , Córtex Insular/diagnóstico por imagem
11.
J Pers Med ; 14(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38929883

RESUMO

Fibromyalgia and osteoarthritis are among the most prevalent rheumatic conditions worldwide. Nonpharmacological interventions have gained scientific endorsements as the preferred initial treatments before resorting to pharmacological modalities. Repetitive transcranial magnetic stimulation (rTMS) is among the most widely researched neuromodulation techniques, though it has not yet been officially recommended for fibromyalgia. This review aims to summarize the current evidence supporting rTMS for treating various fibromyalgia symptoms. Recent findings: High-frequency rTMS directed at the primary motor cortex (M1) has the strongest support in the literature for reducing pain intensity, with new research examining its long-term effectiveness. Nonetheless, some individuals may not respond to M1-targeted rTMS, and symptoms beyond pain can be prominent. Ongoing research aims to improve the efficacy of rTMS by exploring new brain targets, using innovative stimulation parameters, incorporating neuronavigation, and better identifying patients likely to benefit from this treatment. Summary: Noninvasive brain stimulation with rTMS over M1 is a well-tolerated treatment that can improve chronic pain and overall quality of life in fibromyalgia patients. However, the data are highly heterogeneous, with a limited level of evidence, posing a significant challenge to the inclusion of rTMS in official treatment guidelines. Research is ongoing to enhance its effectiveness, with future perspectives exploring its impact by targeting additional areas of the brain such as the medial prefrontal cortex, anterior cingulate cortex, and inferior parietal lobe, as well as selecting the right patients who could benefit from this treatment.

12.
J Alzheimers Dis ; 100(1): 357-374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875035

RESUMO

Background: Executive dysfunction in mild cognitive impairment (MCI) has been associated with gray matter atrophy. Prior studies have yielded limited insight into associations between gray matter volume and executive function in early and late amnestic MCI (aMCI). Objective: To examine the relative importance of predictors of executive function at 24 months and relationships between baseline regional gray matter volume and executive function performance at 24-month follow-up in non-demented older adults. Methods: 147 participants from the Alzheimer's Disease Neuroimaging Initiative (mean age = 70.6 years) completed brain magnetic resonance imaging and neuropsychological testing and were classified as cognitively normal (n = 49), early aMCI (n = 60), or late aMCI (n = 38). Analyses explored the importance of demographic, APOEɛ4, biomarker (p-tau/Aß42, t-tau/Aß42), and gray matter regions-of-interest (ROI) variables to 24-month executive function, whether ROIs predicted executive function, and whether relationships varied by baseline diagnostic status. Results: Across all participants, baseline anterior cingulate cortex and superior parietal lobule volumes were the strongest predictors of 24-month executive function performance. In early aMCI, anterior cingulate cortex volume was the strongest predictor and demonstrated a significant interaction such that lower volume related to worse 24-month executive function in early aMCI. Educational attainment and inferior frontal gyrus volume were the strongest predictors of 24-month executive function performance for cognitively normal and late aMCI groups, respectively. Conclusions: Baseline frontoparietal gray matter regions were significant predictors of executive function performance in the context of aMCI and may identify those at risk of Alzheimer's disease. Anterior cingulate cortex volume may predict executive function performance in early aMCI.


Assuntos
Envelhecimento , Disfunção Cognitiva , Função Executiva , Substância Cinzenta , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Humanos , Masculino , Feminino , Função Executiva/fisiologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Idoso , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/psicologia , Disfunção Cognitiva/patologia , Envelhecimento/fisiologia , Envelhecimento/patologia , Seguimentos , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/patologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Tamanho do Órgão
13.
Curr Biol ; 34(13): 2921-2931.e3, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38908372

RESUMO

Anterior cingulate cortex (ACC) activity is important for operations that require the ability to integrate multiple experiences over time, such as rule learning, cognitive flexibility, working memory, and long-term memory recall. To shed light on this, we analyzed neuronal activity while rats repeated the same behaviors during hour-long sessions to investigate how activity changed over time. We recorded neuronal ensembles as rats performed a decision-free operant task with varying reward likelihoods at three different response ports (n = 5). Neuronal state space analysis revealed that each repetition of a behavior was distinct, with more recent behaviors more similar than those further apart in time. ACC activity was dominated by a slow, gradual change in low-dimensional representations of neural state space aligning with the pace of behavior. Temporal progression, or drift, was apparent on the top principal component for every session and was driven by the accumulation of experiences and not an internal clock. Notably, these signals were consistent across subjects, allowing us to accurately predict trial numbers based on a model trained on data from a different animal. We observed that non-continuous ramping firing rates over extended durations (tens of minutes) drove the low-dimensional ensemble representations. 40% of ACC neurons' firing ramped over a range of trial lengths and combinations of shorter duration ramping neurons created ensembles that tracked longer durations. These findings provide valuable insights into how the ACC, at an ensemble level, conveys temporal information by reflecting the accumulation of experiences over extended periods.


Assuntos
Giro do Cíngulo , Ratos Long-Evans , Giro do Cíngulo/fisiologia , Animais , Ratos , Masculino , Neurônios/fisiologia , Recompensa , Aprendizagem/fisiologia , Condicionamento Operante/fisiologia , Fatores de Tempo
14.
Neuroscience ; 551: 254-261, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38848776

RESUMO

N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether Parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.


Assuntos
Ácido Aspártico , Colina , Disfunção Cognitiva , Creatina , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/diagnóstico por imagem , Masculino , Feminino , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Creatina/metabolismo , Colina/metabolismo , Pessoa de Meia-Idade , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Tálamo/metabolismo , Tálamo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Testes Neuropsicológicos
15.
Neurosci Bull ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869704

RESUMO

Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex. The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes. The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks. Furthermore, our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex, and network functionality was restored through intervention in the dorsolateral prefrontal cortex. This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.

16.
Diagnostics (Basel) ; 14(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893696

RESUMO

Although magnetic resonance spectroscopy (MRS) has provided in vivo measurements of brain chemical profiles in bipolar disorder (BD), there are no data on clinically and therapeutically important onset polarity (OP) and predominant polarity (PP). We conducted a proton MRS study in BD polarity subphenotypes, focusing on emotion regulation brain regions. Forty-one euthymic BD patients stratified according to OP and PP and sixteen healthy controls (HC) were compared. 1H-MRS spectra of the anterior and posterior cingulate cortex (ACC, PCC), left and right hippocampus (LHIPPO, RHIPPO) were acquired at 3.0T to determine metabolite concentrations. We found significant main effects of OP in ACC mI, mI/tNAA, mI/tCr, mI/tCho, PCC tCho, and RHIPPO tNAA/tCho and tCho/tCr. Although PP had no significant main effects, several medium and large effect sizes emerged. Compared to HC, manic subphenotypes (i.e., manic-OP, manic-PP) showed greater differences in RHIPPO and PCC, whereas depressive suphenotypes (i.e., depressive-OP, depressive-PP) in ACC. Effect sizes were consistent between OP and PP as high intraclass correlation coefficients (ICC) were confirmed. Our findings support the utility of MRS in the study of the neurobiological underpinnings of OP and PP, highlighting that the regional specificity of metabolite changes within the emotion regulation network consistently marks both polarity subphenotypes.

17.
Mol Brain ; 17(1): 39, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886822

RESUMO

Areca nut, the seed of Areca catechu L., is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. The major effective constituent of A. catechu, arecoline, has been reported to affect the central nervous system. Less is known if it may affect pain and its related emotional responses. In this study, we found that oral application of arecoline alleviated the inflammatory pain and its induced anxiolytic and anti-depressive-like behavior. Arecoline also increased the mechanical nociceptive threshold and alleviated depression-like behavior in naïve mice. In the anterior cingulate cortex (ACC), which acts as a hinge of nociception and its related anxiety and depression, by using the multi-electrode field potential recording and whole-cell patch-clamp recording, we found that the evoked postsynaptic transmission in the ACC of adult mice has been inhibited by the application of arecoline. The muscarinic receptor is the major receptor of the arecoline in the ACC. Our results suggest that arecoline alleviates pain, anxiety, and depression-like behavior in both physiological and pathological conditions, and this new mechanism may help to treat patients with chronic pain and its related anxiety and disorder in the future.


Assuntos
Ansiedade , Arecolina , Comportamento Animal , Depressão , Transmissão Sináptica , Animais , Transmissão Sináptica/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Arecolina/farmacologia , Masculino , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Camundongos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia
18.
Oxf Open Neurosci ; 3: kvae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915791

RESUMO

Decision making is a process of selecting a course of action by assessing the worth or value of the potential consequences. Rat Gambling Task (RGT) is a well-established behavioral paradigm that allows for assessment of the decision-making performance of rats. Astrocytes are emerging as key players in modulating cognitive functions. Using repeated RGTs with short intersession time intervals (48 h), the current study demonstrates that Gi pathway activation of astrocytes in the anterior cingulate cortex (ACC) leads to impaired decision-making in consistently good decision-making rats. On the other hand, ACC astrocytic Gq pathway activation improves decision-making in a subset of rats who are not consistently good decision-makers. Furthermore, we show that astrocytic Gq activation is associated with an increase in the L-lactate level in the extracellular fluid of the ACC. Together, these results expand our knowledge of the role of astrocytic GPCR signaling in modulating cognitive functions.

19.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38918077

RESUMO

It is crucial to understand how anesthetics disrupt information transmission within the whole-brain network and its hub structure to gain insight into the network-level mechanisms underlying propofol-induced sedation. However, the influence of propofol on functional integration, segregation, and community structure of whole-brain networks were still unclear. We recruited 12 healthy subjects and acquired resting-state functional magnetic resonance imaging data during 5 different propofol-induced effect-site concentrations (CEs): 0, 0.5, 1.0, 1.5, and 2.0 µg/ml. We constructed whole-brain functional networks for each subject under different conditions and identify community structures. Subsequently, we calculated the global and local topological properties of whole-brain network to investigate the alterations in functional integration and segregation with deepening propofol sedation. Additionally, we assessed the alteration of key nodes within the whole-brain community structure at each effect-site concentrations level. We found that global participation was significantly increased at high effect-site concentrations, which was mediated by bilateral postcentral gyrus. Meanwhile, connector hubs appeared and were located in posterior cingulate cortex and precentral gyrus at high effect-site concentrations. Finally, nodal participation coefficients of connector hubs were closely associated to the level of sedation. These findings provide valuable insights into the relationship between increasing propofol dosage and enhanced functional interaction within the whole-brain networks.


Assuntos
Encéfalo , Hipnóticos e Sedativos , Imageamento por Ressonância Magnética , Propofol , Humanos , Propofol/farmacologia , Propofol/administração & dosagem , Masculino , Imageamento por Ressonância Magnética/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Adulto , Feminino , Hipnóticos e Sedativos/farmacologia , Adulto Jovem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Anestésicos Intravenosos/farmacologia , Mapeamento Encefálico/métodos
20.
Neuron ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38823391

RESUMO

Neurons from multiple prefrontal areas encode several key variables of social gaze interaction. To explore the causal roles of the primate prefrontal cortex in real-life gaze interaction, we applied weak closed-loop microstimulations that were precisely triggered by specific social gaze events. Microstimulations of the orbitofrontal cortex, but not the dorsomedial prefrontal cortex or the anterior cingulate cortex, enhanced momentary dynamic social attention in the spatial dimension by decreasing the distance of fixations relative to a partner's eyes and in the temporal dimension by reducing the inter-looking interval and the latency to reciprocate the other's directed gaze. By contrast, on a longer timescale, microstimulations of the dorsomedial prefrontal cortex modulated inter-individual gaze dynamics relative to one's own gaze positions. These findings demonstrate that multiple regions in the primate prefrontal cortex may serve as functionally accessible nodes in controlling different aspects of dynamic social attention and suggest their potential for a therapeutic brain interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA