Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 227: 115773, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966995

RESUMO

Coal mining activities are considered harmful to living organisms. These activities release compounds to the environment, such as polycyclic aromatic hydrocarbons (PAHs), metals, and oxides, which can cause oxidative damage to DNA. In this study, we compared the DNA damage and the chemical composition of peripherical blood of 150 individuals exposed to coal mining residues and 120 non-exposed individuals. Analysis of coal particles revealed the presence of elements such as copper (Cu), aluminum (Al), chrome (Cr), silicon (Si) and iron (Fe). The exposed individuals in our study had significant concentrations of Al, sulfur (S), Cr, Fe, and Cu in their blood, as well as hypokalemia. Results from the enzyme-modified comet assay (FPG enzyme) suggest that exposure to coal mining residues caused oxidative DNA damage, particularly purine damage. Furthermore, particles with a diameter of <2.5 µm indicate that direct inhalation could promote these physiological alterations. Finally, a systems biology analysis was performed to investigate the effects of these elements on DNA damage and oxidative stress pathways. Interestingly, Cu, Cr, Fe, and K are key nodes that intensely modulate these pathways. Our results suggest that understanding the imbalance of inorganic elements caused by exposure to coal mining residues is crucial to understanding their effect on human health.


Assuntos
Minas de Carvão , Humanos , Dano ao DNA , Ensaio Cometa/métodos , Metais , Estresse Oxidativo , Alumínio , Carvão Mineral
2.
Environ Sci Pollut Res Int ; 30(18): 54095-54105, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36869947

RESUMO

During coal mining activities, many compounds are released into the environment that can negatively impact human health. Particulate matter, polycyclic aromatic hydrocarbons (PAHs), metals, and oxides are part of the complex mixture that can affect nearby populations. Therefore, we designed this study to evaluate the potential cytotoxic and genotoxic effects in individuals chronically exposed to coal residues from peripheral blood lymphocytes and buccal cells. We recruited 150 individuals who lived more than 20 years in La Loma-Colombia and 120 control individuals from the city of Barranquilla without a history of exposure to coal mining. In the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, significant differences in the frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD), and apoptotic cells (APOP) were observed between the two groups. In the buccal micronucleus cytome (BM-Cyt) assay, a significant formation of NBUD, karyorrhexis (KRX), karyolysis (KRL), condensed chromatin (CC), and binucleated (BN) cells was observed in the exposed group. Considering the characteristics of the study group, a significant correlation for CBMN-Cyt was found between NBUD and vitamin consumption, between MN or APOP and meat consumption, and between MN and age. Moreover, a significant correlation for BM-Cyt was found between KRL and vitamin consumption or age, and BN versus alcohol consumption. Using Raman spectroscopy, a significant increase in the concentration of DNA/RNA bases, creatinine, polysaccharides, and fatty acids was detected in the urine of individuals exposed to coal mining compared to the control group. These results contribute to the discussion on the effects of coal mining on nearby populations and the development of diseases due to chronic exposure to these residues.


Assuntos
Antineoplásicos , Minas de Carvão , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Mucosa Bucal , Testes para Micronúcleos/métodos , Dano ao DNA , Linfócitos , Antineoplásicos/farmacologia
3.
Heliyon ; 8(11): e11751, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36468138

RESUMO

Objective: This study was aimed to investigate the role of non-neuronal cholinergic system (NNCS) in the early stage response of epithelial-mesenchymal transformation (EMT) related markers in human lung adenocarcinoma A549 cells induced by coal particles. Methods: A549 cells were exposed to different concentrations of GBW11110K, GBW11126D and exogenous acetylcholinesterase (AChE) (the exposure doses were determined according to the results of CCK-8 experiment, and the doses that had no significant effects on cell viability were selected) for 24 h. After exposure, the indexes of oxidative stress (SOD and MDA), inflammatory factors (IL-6 and TNF-α), EMT marker proteins (E-cadherin and vimentin), AChE enzymatic activity and mRNA expression levels of different types of acetylcholine receptors (CHRM3, CHRM5, CHRNA5, CHRNA7, CHRNA9 and CHRNB2) were determined. Results: GBW11110K and GBW11126D exposure could lead to the following injury effects: the levels of oxidative stress and inflammatory factors changed to a certain extent (SOD decreased gradually, while MDA, IL-6 and TNF-α increased). The protein level of E-cadherin decreased while the vimentin level increased (P < 0.05), suggesting the occurrence of EMT. The AChE enzymatic activity decreased gradually. The expression of acetylcholine receptor mRNA changed as follows (GBW11110K/GBW11126D: CHRM3 (↑↑), CHRM5 (↓↓), CHRNA5 (↓↓), CHRNA7 (↓↓), CHRNA9 (- ↑), CHRNB2 (- -). The addition of exogenous AChE recombinant protein could antagonize the damage effects caused by the coal particles to a certain extent. Conclusion: The coal particle exposure could induce the change of oxidative stress response, inflammatory response and EMT related markers, down-regulate the AChE enzymatic activity, and interfere the mRNA expression levels of AChRs in A549 cells. The addition of exogenous AChE recombinant protein could reverse the above effects to a certain extent.

4.
Appl Radiat Isot ; 149: 22-30, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31004983

RESUMO

Radiotracer investigations were carried out for measurement and analysis of residence time distribution (RTD) of coal particles in a pilot-scale gasifier fitted with a flat air/steam distributor. Measurements were made at different operating conditions using gold-198 (198Au) labeled coal particles as a radiotracer. The measured RTDs were treated and mean residence times (MRTs) were determined. Furthermore, the treated RTDs were simulated using a suitably conceptualized mathematical model and detailed information about hydrodynamics of coal particles within the gasifier was obtained. Results of model simulation indicated that the gasifier behaved as an ideal mixer of fine coal particles exiting from the top of the gasifier. A small fraction of the coarser particles was found to be bypassing at ambient temperature.

5.
Appl Radiat Isot ; 122: 127-135, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28160715

RESUMO

This paper describes a systematic study carried out to investigate adsorption characteristics of 198Au onto the surface of coal particles using a radiotracer technique. The main objective of the study was to optimize labeling conditions and utilize the labeled coal particles as a radiotracer for tracing coal particles in fluidized bed coal gasifiers. The effect of various experimental factors such as pH, amount of adsorbent, initial gold concentration, temperature and contact time between adsorbate and adsorbent were studied to obtain optimum conditions for maximum adsorption of 198Au on coal particles from an aqueous solution. Analysis of the data showed that the Langmuir model was found most suitable to describe the adsorption phenomena. The thermodynamic analysis showed that the adsorption process is feasible, spontaneous and endothermic in nature. The results of the kinetics suggested that the adsorption presumably follows second order kinetics and chemisorption in nature. Based on the optimized conditions, the amount of coal particles and activity to be used for tracing the coal phase in pilot-scale gasifiers was estimated. Accordingly, the radiotracer was prepared and successfully used for measurement of residence time distribution (RTD) in a pilot-scale coal gasifier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA