Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 802
Filtrar
1.
Methods Mol Biol ; 2834: 293-301, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39312171

RESUMO

The development of novel drug candidates is a current challenge in pharmacology where therapeutic benefits must exceed side effects. Toxicology testing is therefore a fundamental step in drug discovery research. Herein, we describe the first line of toxicology testing program, consisting in cell-based high-throughput screening assays, which have the advantage of being easy, rapid, cheap, and reproducible while providing quantitative information. We illustrate MTT and Crystal Violet assays, two common colorimetric tests able to assess both cytostatic and cytotoxic effects, respectively, of a drug candidate. MTT assay allows evaluation of cellular metabolic activity, by which cell viability can be inferred; Crystal Violet staining is directly correlated with attached viable cells, thus allowing direct assessment of cell survival and death. Therefore, combination of the two methodologies represents a useful tool for predicting drug sensitivity and efficacy, the first milestones in pre-clinical toxicology workflow.


Assuntos
Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Violeta Genciana , Ensaios de Triagem em Larga Escala , Sais de Tetrazólio , Testes de Toxicidade , Testes de Toxicidade/métodos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Sais de Tetrazólio/química , Ensaios de Triagem em Larga Escala/métodos , Animais , Colorimetria/métodos , Tiazóis/toxicidade
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124948, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146630

RESUMO

Herein, a nanocomposite of Cu,Ce-containing phosphotungstates (Cu,Ce-PTs) with outstanding laccase-like activity was fabricated via a one-pot microwave-assisted hydrothermal method. Notably, it was discovered that both Fe3+ and Cr6+ could significantly enhance the electron transfer rates of Ce3+ and Ce4+, along with generous Cu2+ with high catalytic activity, thereby promoting the laccase-like activity of Cu,Ce-PTs. The proposed system can be used for the detection of Fe3+ and Cr6+ in a range of 0.667-333.33 µg/mL and 0.033-33.33 µg/mL with a low detection limit of 0.135 µg/mL and 0.0288 µg/mL, respectively. The proposed assay exhibits excellent reusability and selectivity and can be used in traditional Chinese medicine samples analysis.


Assuntos
Cério , Cromo , Colorimetria , Cobre , Ferro , Lacase , Cobre/análise , Cobre/química , Cromo/análise , Colorimetria/métodos , Lacase/metabolismo , Lacase/química , Ferro/análise , Ferro/química , Cério/química , Limite de Detecção , Ácido Fosfotúngstico/química , Nanocompostos/química , Catálise
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124967, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39153350

RESUMO

Hexavalent chromium (CrVI) poses a serious risk to both human and environment health. Hence, a simple, robust, and efficient analytical method must be developed to monitor the presence of Cr(VI) in the environment. The current investigation concentrated on the colorimetric detection of Cr(VI) using TMB as indicator in the presence of H2O2. The study found that Cr(VI) reacts with H2O2 to generate hydroxyl radicals which oxidize TMB in a concentration dependent manner. Under optimized conditions, the method obtained a good linearity range (0.025-0.5 mg/L, r2 = 0.9944) with LOD and LOQ of 0.009 mg/L and 0.029 mg/L, respectively. The technique was further improved by the addition of EDTA in the sample preparation protocol to reduce the false positive result by the presence of ions like Cu2+, Fe3+, etc. The study recorded improved Cr(VI) recoveries (81.73-111.40 %) at different fortification levels (0.1-0.5 mg/L). Under optimized conditions, the EDTA added method obtained a good linear response (r2 = 0.9952) with a detection limit of 0.023 mg/L which is less than the prescribed limits by WHO (0.05 mg/L) and US EPA (0.1 mg/L) for drinking water. The developed analytical method is very simple without use of any nanomaterial and the results with natural water samples show that it has the potential for real-time detection of Cr(VI) in the environment.

4.
Mikrochim Acta ; 191(11): 654, 2024 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-39377950

RESUMO

By self-assembly of MnCl2 and arginine under alkaline conditions, ultra-small MnArg nanoparticles were successfully constructed as oxidase (OXD) mimics for intelligent detection of the Ginkgo toxin 4'-O-methylpyridoxal (MPN). The obtained MnArg nanozymes possessed excellent OXD-like activity and thermal stability. Based on the inhibitory effect of MPN for the catalytic activity of MnArg, this system was utilized for the colorimetric sensing of MPN with a low limit of detection (LOD) of 2.16 µg mL-1. The detection  system exhibited good selectivity against other potential interferents. FTIR data showed that the presence of MPN binds with MnArg and shields the active sites, thereby interfering with the oxidase-like activity. Combined with a smartphone and the ColorMax software, this nanozyme-based intelligent detection platform could effectively detect MPN with a LOD of 2.1 µg mL-1. Our MnArg nanozyme-based system was applied to detect real ginkgo nut samples with recoveries of 92.4-108.7%, and the relative standard deviations were less than 0.7%. This work may promote the development of novel nanozymes and expand their applications in the field of food safety detection.


Assuntos
Arginina , Colorimetria , Ginkgo biloba , Limite de Detecção , Manganês , Oxirredutases , Smartphone , Arginina/química , Arginina/análogos & derivados , Colorimetria/métodos , Manganês/química , Oxirredutases/química , Oxirredutases/metabolismo , Ginkgo biloba/química , Materiais Biomiméticos/química , Nanopartículas/química
5.
Nanotechnology ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39389093

RESUMO

Accurate and point-of-care cholesterol detection is of paramount significance for the prevention of cardiovascular diseases. The colorimetric assay based on peroxidase is a commonly used approach for cholesterol detection, without requiring any complicated biomolecular labeling or sophisticated instrumentation. Copper nanoclusters (CuNCs), exhibiting luminescent properties and peroxidase activity, have garnered significant attention in biomedical application recently. Herein, the glutathione-stabilized copper nanoclusters (GSH-CuNCs) were prepared with an easy one-pot method, employing glutathione as both a reducing agent and stabilizer. An optimization of the GSH-CuNCs preparation was carried out to obtain the highest peroxidase-like activity. UV-Vis absorption was measured to explore the steady-state kinetics of the GSH-CuNCs-catalyzed oxidation of 3,3',5,5' - tetramethylbenzidine (TMB) by H2O2. A colorimetric method for cholesterol detection was developed by combining the catalytic reaction of CuNCs and the enzymatic oxidation of cholesterol with cholesterol oxidase (ChOx). Under the optimized conditions, the UV-Vis absorbance of oxidized TMB (oxTMB) is proportional to the concentration of cholesterol within the range of 6.2-187.5 µM, and the limit of detection (LOD) is determined to be 3.0 µM. More importantly, cholesterol levels can be directly distinguished with the naked eye. Furthermore, the practicality of the method for detecting cholesterol in human serum has been verified with promising results. As expected, this simple, cost-effective, and easy-to-operate colorimetric method for cholesterol detection has potential applications in clinical diagnosis and provides valuable insights into the colorimetric sensing based on CuNCs.

6.
Mikrochim Acta ; 191(10): 637, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39349675

RESUMO

Gold-platinum (Au@Pt) nanozymes with high catalytic activity and stability were designed to improve the stability of the enzyme-linked immunosorbent assay (ELISA), and a two-mode signal output was used to enhance the sensitivity and confidence of the assay. This study reports the two-mode signal output based on Au@Pt nanozyme to catalyzed 3,3',5,5'-tetramethylbenzidine (TMB) reaction. Oxidized 3,3',5,5'-tetramethylbenzidine (ox-TMB) has wide absorption spectrum, providing excellent optical density capabilities and fluorescence quenching. The detection limits of imidacloprid were 0.88 µg/L and 1.14 µg/L in colorimetric and fluorescence modes, respectively. Multiple-mode strategy improves detection accuracy, increases the confidence of experimental results, and broadens detection modes. Two modes can meet the requirements of accurate and flexible multi-mode sensing in different application situations.


Assuntos
Benzidinas , Colorimetria , Ouro , Limite de Detecção , Neonicotinoides , Nitrocompostos , Platina , Neonicotinoides/análise , Nitrocompostos/química , Nitrocompostos/análise , Platina/química , Ouro/química , Colorimetria/métodos , Benzidinas/química , Nanopartículas Metálicas/química , Inseticidas/análise , Catálise , Espectrometria de Fluorescência/métodos , Técnicas Biossensoriais/métodos
7.
Micromachines (Basel) ; 15(9)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39337777

RESUMO

Alpha-fetoprotein (AFP) is a key marker for early cancer detection and assessment. However, the current detection methods struggle to balance accuracy with the need for decentralized medical treatment. To address this issue, a new AFP analysis platform utilizing digital image colorimetry has been developed. Functionalized gold nanoparticles act as colorimetric agents, changing from purple-red to light gray-blue when exposed to different AFP concentrations. A smartphone app captures these color changes and calculates the AFP concentration in the sample. To improve detection accuracy, a hardware device ensures uniform illumination. Testing has confirmed that this system can quantitatively analyze AFP using colorimetry. The limit of detection reached 0.083 ng/mL, and the average accuracy reached 90.81%. This innovative method enhances AFP testing by offering portability, precision, and low cost, making it particularly suitable for resource-limited areas.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125117, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39288602

RESUMO

The abuse of antibiotics has seriously threatened human health and living environment. Nevertheless, the detection of quinolones is currently mainly performed by high-cost and cumbersome means, such as High-Performance Liquid Chromatography (HPLC). Herein, we reported a novel method based on copper-doped MoOx nanoparticles (Cu-MoOx NPs) with peroxidase-like enhancement activity for the easy preparation, sensitive and rapid visualization of quinolone detection. Cu-MoOx NPs can make the chromogenic substrate 3,3',5,5'-Tetramethylbenzidine (TMB) change from colorless to blue. Moreover, the addition of quantitative quinolone antibiotics can significantly accelerate the TMB oxidation reaction. Based on this phenomenon, a colorimetric method for detecting quinolone antibiotics was established with a good linear relationship ranging from 1 × 10-6 M to 1.3 × 10-4 M, and the detection limit was 0.310 µM for ciprofloxacin (CIP) and 0.520 µM for levofloxacin (LVFX). Furthermore, the mechanism was also explored, and the results showed that the peroxidase-like activity of Cu-MoOx NPs was probably derived from the generated OH, 1O2, oxygen vacancies and partially reduced Cu+, and on the other hand was derived from quinolone antibiotics and nanozymes electrostatic interaction between them.

9.
Mikrochim Acta ; 191(10): 599, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276245

RESUMO

A colorimetric sensor for the rapid and sensitive detection of GSH was developed. The hydrothermal method was utilized to synthesize chitosan-stabilized gold nanoparticles (CS-AuNPs). The synthesized CS-AuNPs were characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffractograms (XRD), and Fourier transform infrared spectroscopy (FTIR). The CS-AuNPs are well-dispersed and possess a spherical shape with an average particle size of 10.05 ± 2.26 nm in aqueous solution. They show an intrinsic peroxidase-like activity, which could efficiently catalyze the decomposition of H2O2 to produce •OH radicals. These radicals then oxidized 3, 3´, 5, 5´-tetramethylbenzidine (TMB), resulting in the formation of the blue oxidized product oxTMB, observed a visible color change (from colorless to blue), and oxTMB had an obvious absorption peak at 652 nm. The presence of GSH could inhibit the peroxidase-like activity of CS-AuNPs, thereby reducing the formation of oxTMB. The solution's blue hue underwent a reduction in absorption intensity. Based on this fact, a novel and sensitive colorimetric sensor for detection of GSH was constructed. Under optimal conditions, the results of detection had an excellent linear relationship between the concentration of GSH and ∆A within the range 0.5 ~ 50.0 × 10-6 mol/L. The limit of detection (LOD) for GSH was 2.10 × 10-7 mol/L, which was much lower than those in most previous works. Furthermore, for detection in real human serum samples, the recoveries of GSH and the relative standard deviations (RSD) in the serum were in the range 98.40 ~ 103.32% and 1.85 ~ 3.54%, respectively. Thus, this visual colorimetric method has good precision and can be used for GSH detection in practical applications, promising in the fields of bioanalysis and illness diagnostics.


Assuntos
Quitosana , Colorimetria , Glutationa , Ouro , Limite de Detecção , Nanopartículas Metálicas , Ouro/química , Humanos , Colorimetria/métodos , Quitosana/química , Nanopartículas Metálicas/química , Glutationa/sangue , Glutationa/química , Peróxido de Hidrogênio/química , Benzidinas/química , Peroxidase/química
10.
Mikrochim Acta ; 191(10): 582, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39245663

RESUMO

A novel colorimetric approach specifically designed to effectively identify the presence of 3-aminophenol (3-AP) in environmental water is introduced. Briefly, a nitrogen-doped carbon-supported cobalt nanozyme (Co@CN-1) was synthesized and utilized to improve the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of peroxymonosulfate (PMS). Comparative catalytic reactions confirmed that the performance of PMS as an activator exceeds that of hydrogen peroxide catalytically by a factor of 3.5. The catalytic reaction parameters underwent optimization, further resulting in the derivation of a linear detection equation for 3-AP, expressed as inhibition rate (IR%) = 3.35[3-AP]-4.36 (0-20 µM, R2 = 0.994) and IR% = 1.43[3-AP] + 31.87 (20-36 µM, R2 = 0.992), with the limit of detection (LOD) of 2.84 µM. The linear relationship between 3-AP concentration and the conversion of color to grayscale value (GSV) was established by smartphones, expressed as GSV = 1.28[3-AP] + 147.10 (R2 = 0.972). Density functional theory calculations revealed that Co acts as the preferred active site for donating electrons in PMS activation. This work provides a rapid and accurate approach for monitoring 3-AP concentration, enabling real-time analysis and potentially contributing to environmental and ecological studies.

11.
Molecules ; 29(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39125086

RESUMO

Interleukin-6 (IL-6) detection and monitoring are of great significance for evaluating the progression of many diseases and their therapeutic efficacy. Lateral flow immunoassay (LFIA) is one of the most promising point-of-care testing (POCT) methods, yet suffers from low sensitivity and poor quantitative ability, which greatly limits its application in IL-6 detection. Hence, in this work, we integrated Aushell nanoparticles (NPs) as new LFIA reporters and achieved the colorimetric and photothermal dual-mode detection of IL-6. Aushell NPs were conveniently prepared using a galvanic exchange process. By controlling the shell thickness, their localized surface plasmon resonance (LSPR) peak was easily tuned to near-infrared (NIR) range, which matched well with the NIR irradiation light. Thus, the Aushell NPs were endowed with good photothermal effect. Aushell NPs were then modified with IL-6 detection antibody to construct Aushell probes. In the LFIA detection, the Aushell probes were combined with IL-6, which were further captured by the capture IL-6 antibody on the test line of the strip, forming a colored band. By observation with naked eyes, the colorimetric qualitative detection of IL-6 was achieved with limit of 5 ng/mL. By measuring the temperature rise of the test line with a portable infrared thermal camera, the photothermal quantitative detection of IL-6 was performed from 1~1000 ng/mL. The photothermal detection limit reached 0.3 ng/mL, which was reduced by nearly 20 times compared with naked-eye detection. Therefore, this Aushell-based LFIA efficiently improved the sensitivity and quantitative ability of commercial colloidal gold LFIA. Furthermore, this method showed good specificity, and kept the advantages of convenience, speed, cost-effectiveness, and portability. Therefore, this Aushell-based LFIA exhibits practical application potential in IL-6 POCT detection.


Assuntos
Colorimetria , Ouro , Interleucina-6 , Interleucina-6/análise , Ouro/química , Imunoensaio/métodos , Colorimetria/métodos , Humanos , Nanoconchas/química , Ressonância de Plasmônio de Superfície/métodos , Nanopartículas Metálicas/química , Limite de Detecção , Técnicas Biossensoriais/métodos
12.
Talanta ; 280: 126770, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39208678

RESUMO

Monitoring various biomarkers in saliva samples emerges as a dynamic and non-invasive method. However, the high viscosity of saliva presents a distinct challenge when integrating paper-based platforms for on-site analysis. In addressing this challenge, we introduced the capillary-driven microfluidic paper-based analytical devices (µCD-PAD) designed for user-friendly and simultaneous detection of ethanol and tetrahydrocannabinol (THC) in saliva without a sample preparation step. Employing a colorimetric approach, we quantified both analytes. Synthetic salivas of varying viscosity flowed seamlessly to the detection zone without needing a sample preparation step, and no impact on colorimetric detection due to viscosity was observed (RSD <5 %). Within 10 min after the solution reached the detection zone, the device produced a homogeneous color signal, easily analyzed by a smartphone camera. To extend the application for determination to cover a legal limit concentration of ethanol and concentration of salivary THC even 24 h after marijuana consumption, the detection time of 30 min was optimized. Moreover, a saliva sample containing both analytes was used to demonstrate the capability of the developed device to detect ethanol and THC simultaneously. No cross-talk between ethanol and THC occurred and showed recovery in the 98-102 % for ethanol and 95-105 % for THC with acceptable accuracy. This developed device exhibits excellent potential for forensic applications, providing a user-friendly, cost-effective, and real-time screening tool for detecting ethanol and THC in saliva.


Assuntos
Colorimetria , Dronabinol , Etanol , Papel , Saliva , Smartphone , Dronabinol/análise , Saliva/química , Etanol/análise , Colorimetria/métodos , Colorimetria/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Detecção do Abuso de Substâncias/métodos , Detecção do Abuso de Substâncias/instrumentação
13.
Talanta ; 279: 126630, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39098242

RESUMO

Laccase is well-known for its eco-friendly applications in environmental remediation and biotechnology, but its high cost and low stability have limited its practical use. Therefore, there is an urgent need to develop efficient laccase mimetics. In this study, a novel laccase-mimicking nanozyme (MBI-Cu) was successfully synthesized using 2-methylbenzimidazole (MBI) coordinated with Cu2+ by mimicking the copper active site and electron transfer pathway of natural laccase. MBI-Cu nanozyme exhibited excellent catalytic activity and higher stability than laccase, and was utilized to oxidize a series of phenolic compounds. Environmental pollutant aminophenol isomers were found to display different color in solution when catalytically oxidized by MBI-Cu, which provided a simple and feasible method to identify them by the naked eye. Based on the distinct absorption spectra of the oxidized aminophenol isomers, a colorimetric method for quantitatively detecting o-AP, m-AP, and p-AP was established, with detection limits of 0.06 µM, 0.27 µM, and 0.18 µM, respectively. Furthermore, by integrating MBI-Cu-based cotton pad colorimetric strips with smartphone and utilizing color recognition software to identify and analyze the RGB values of the images, a portable colorimetric sensing platform was designed for rapid detection of aminophenol isomers without the need for any analytical instrument. This work provides an effective reference for the design of laccase nanozymes and holds significant potential for applications in the field of environmental pollutant monitoring.


Assuntos
Aminofenóis , Benzimidazóis , Colorimetria , Cobre , Lacase , Lacase/química , Lacase/metabolismo , Colorimetria/métodos , Cobre/química , Aminofenóis/química , Aminofenóis/análise , Benzimidazóis/química , Isomerismo
14.
Sci Rep ; 14(1): 19441, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169064

RESUMO

Chronic kidney disease (CKD) is a widespread condition with considerable health and economic impacts globally. However, existing methodologies for serum creatinine assessment often involve prolonged wait times and sophisticated equipment, such as spectrometers, hindering real-time diagnosis and care. Innovative solutions like point-of-care (POC) devices are emerging to address these challenges. In this context, there is a recognized need for remote, regular, automated, and low-cost analysis of serum creatinine levels, given its role as a critical parameter for CKD diagnosis and management. This study introduces a miniaturized system with integrated heater elements designed for precise serum creatinine measurement. The system operates based on the Jaffe method and accurate serum creatinine measurement within a microreservoir chip. Smartphone-based image processing using the hue-saturation-value (HSV) color space was applied to captured images of microreservoirs. The creatinine analyses were conducted in serum with a limit of detection of ~ 0.4 mg/dL and limit of quantification of ~ 1.3 mg/dL. Smartphone-based image processing employing the HSV color space outperformed spectrometric analysis for creatinine measurement conducted in serum. This pioneering technology and smartphone-based processing offer the potential for decentralized renal function testing, which could significantly contribute to improved patient care. The miniaturized system offers a low-cost alternative ($87 per device), potentially reducing healthcare expenditures (~ $0.5 per test) associated with CKD diagnosis and management. This innovation could greatly improve access to diagnosis and monitoring of CKD, especially in regions where access to sophisticated laboratory equipment is limited.


Assuntos
Colorimetria , Creatinina , Smartphone , Creatinina/sangue , Colorimetria/instrumentação , Colorimetria/métodos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito/economia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/sangue , Miniaturização
15.
ACS Appl Mater Interfaces ; 16(33): 44105-44113, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39105731

RESUMO

Magnetically controllable soft robots are of great interest because they have unique properties compared with conventional rigid counterparts and can be used in diverse applications such as intelligent electronics, bionics, personalized medicine, and cargo grasping. However, the fabrication of such multifunctional soft robots has been challenging because of the integration of dissimilar materials into the robot body. Herein, we designed and fabricated a soft robotic multifunctional system using conventional papers and elastomeric polymers for the colorimetric detection of heavy metal ions (Hg2+ and Fe3+) in water samples. The magnetic actuation of the platforms was shown to correlate with the type of underlying paper and magnetic particle content in the mixtures. Moreover, it was observed that actuation can also be manipulated by controlling the magnetic field strength. A proof-of-concept robotic paper-based Hg2+, Zn2+, and Fe3+ ion detection was demonstrated by combining colorimetric paper sensors and magneto-papers. Our study highlights the significant potential of paper as a material for the fabrication of effective and multifunctional untethered soft robots.

16.
ACS Nano ; 18(34): 23625-23636, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39150349

RESUMO

Accurate diagnosis and classification of kidney cancer are crucial for high-quality healthcare services. However, the current diagnostic platforms remain challenges in the rapid and accurate analysis of large-scale clinical biosamples. Herein, we fabricated a bifunctional smart nanoplatform based on tannic acid-modified gold nanoflowers (TA@AuNFs), integrating nanozyme catalysis for colorimetric sensing and self-assembled nanoarray-assisted LDI-MS analysis. The TA@AuNFs presented peroxidase (POD)- and glucose oxidase-like activity owing to the abundant galloyl residues on the surface of AuNFs. Combined with the colorimetric assay, the TA@AuNF-based sensing nanoplatform was used to directly detect glucose in serum for kidney tumor diagnosis. On the other hand, TA@AuNFs could self-assemble into closely packed and homogeneous two-dimensional (2D) nanoarrays at liquid-liquid interfaces by using Fe3+ as a mediator. The self-assembled TA@AuNFs (SA-TA@AuNFs) arrays were applied to assist the LDI-MS analysis of metabolites, exhibiting high ionization efficiency and excellent MS signal reproducibility. Based on the SA-TA@AuNF array-assisted LDI-MS platform, we successfully extracted metabolic fingerprints from urine samples, achieving early-stage diagnosis of kidney tumor, subtype classification, and discrimination of benign from malignant tumors. Taken together, our developed TA@AuNF-based bifunctional smart nanoplatform showed distinguished potential in clinical disease diagnosis, point-of-care testing, and biomarker discovery.


Assuntos
Colorimetria , Ouro , Neoplasias Renais , Taninos , Humanos , Neoplasias Renais/diagnóstico , Ouro/química , Taninos/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Nanopartículas Metálicas/química , Peroxidase/química , Peroxidase/metabolismo
17.
Anal Chim Acta ; 1320: 343014, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142785

RESUMO

Herein, the selenium (Se) modified gold nanoparticles (Se-AuNPs) was synthesized using cerium doped carbon dots (Ce-CDs) as a reducing agent and template. As desired, Se-AuNPs displays enhanced peroxidase (POD)-like activity in the presence of Hg2+. The mechanism for the enhanced activity was attributed to the increased affinity between Se-AuNPs-Hg2+ and the substrate, in which Se and Au elements have a strong binding capacity to Hg2+, forming Hg-Se bonds and Au-Hg amalgam to generate more ·OH. This POD-like activity of Se-AuNPs-Hg2+ correlates with the colorimetric reaction by the catalytic reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. The oxidation of TMB was completely inhibited by the introduction of the reductive S2-. Based on the above findings, a strategy for the colorimetric detection of Hg2+ and S2- by Se-AuNPs was established with linear ranges of 0.33-66 µg/L and 0.625-75 µg/L, and low detection limits of 0.17 µg/L and 0.12 µg/L (3.3 δ/k), respectively. When the colorimetric probes for detection of Hg2+ and S2- was applied in environmental water samples, the recoveries were in the range of 90.3-108.0 %. This method will provide a new idea for the colorimetric detection strategy of Hg2+ due to the strong interaction between Hg and Se.


Assuntos
Colorimetria , Ouro , Mercúrio , Nanopartículas Metálicas , Selênio , Colorimetria/métodos , Mercúrio/análise , Ouro/química , Nanopartículas Metálicas/química , Selênio/química , Limite de Detecção , Poluentes Químicos da Água/análise , Benzidinas/química , Peroxidase/química , Peroxidase/metabolismo , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise
18.
J Hazard Mater ; 477: 135398, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096639

RESUMO

Arsenic contamination in environmental water sources poses a significant threat to human health, necessitating the development of sensitive and accessible detection methods. This study presents a multidimensional optimization of a bacterial biosensor for the susceptible and deoxyviolacein (DV)-based visual detection of arsenic. The research involved screening six different arsenic resistance (ars) operons and optimizing the genetic circuit to minimize background noise. Introducing an arsenic-specific transport channel enhanced the sensor's sensitivity to 1 nM with a quantitative range from 0.036 to 1.171 µM. The pigment-based biosensor offers a simple colorimetric approach for arsenic detection without complex instrumentation. The preferred biosensor demonstrated characteristics of anti-chelating agent interference, consistently quantified As(III) concentrations ranging from 0.036 to 1.171 µM covering the World Health Organization (WHO) drinking water limit. Innovatively, it effectively detects arsenic in seawater within a linear regression range of 0.071 to 1.125 µM. The biosensor's selectivity for arsenic was confirmed, with minimal cross-response to group 15 metals. Our naked-eye biosensor offers a novel approach for the rapid, on-site detection of arsenic in various water sources. Its simplicity, cost-effectiveness, and versatility make it a valuable tool for environmental monitoring and public health initiatives.


Assuntos
Arsênio , Técnicas Biossensoriais , Poluentes Químicos da Água , Arsênio/análise , Técnicas Biossensoriais/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Colorimetria/métodos , Água do Mar/análise , Água do Mar/química
19.
Heliyon ; 10(15): e34962, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145013

RESUMO

In this article, copper carbonate analog with good peroxidase-like activity was successfully synthesized for the first time via a simple co-precipitation of CuSO4▪5H2O and Na2CO3. The obtained copper carbonate analog exhibited excellent intrinsic peroxidase-like activity towards a classical peroxidase substrate of 3, 3', 5, 5' -tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) under an acidic environment. The study of the catalytic mechanism confirmed that the hydroxyl radical produced from the decomposition of H2O2 is the main reactive oxygen species responsible for the catalytic oxidation of TMB to oxTMB. Moreover, results from kinetic parameter analysis indicated that H2O2 was more easily and/or likely to attach to the copper carbonate analog than TMB. Subsequently, the effects of experimental conditions (buffer pH, temperature, and incubation time) on the catalytic activity of the copper carbonate analog were also optimized. Finally, a copper carbonate analog-based colorimetric sensor was developed to determine isoniazid. Under the optimal conditions, the linear range for isoniazid was as broad as 0-178.6 µM, and the detection limit was as low as 8.47 µM. The spiked recoveries of isoniazid in normal human serum has been observed in the range of 94.8%-105.5 %. This strategy focuses on the development of a green, cost-efficient peroxidase mimic with high activity, good biocompatibility, and a simple synthesis process.

20.
Spectrochim Acta A Mol Biomol Spectrosc ; 323: 124871, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39096670

RESUMO

Different enantiomer forms of amino acids play different roles in multifarious fields, and improper use will cause irreversible effects. Therefore, the identification of chiral amino acids is a vital issue in the field of pharmaceutical analysis. Herein, a chiral sensing system of ß-cyclodextrin coated silver nanoparticle (ß-CD@AgNPs) with peroxidase-like activity was designed for the fast and efficient colorimetric identification of tryptophan (Trp) enantiomers based on the difference in binding capacity between D/L-Trp and ß-CD. The results showed the satisfactory linearity for detecting D/L-Trp over the concentration range from 0.2 to 4 mM with a LOD of 0.16 and 0.18 mM, respectively. Moreover, the absorbance increased linearly with the rise of D-Trp concentration percentage in the Trp enantiomer mixture. The proposed method avoided the use of natural enzymes and improved the stability due to the protective effect of cyclodextrin, which provided a new idea for selective colorimetric recognition and detection of D/L-Trp based on cyclodextrin.


Assuntos
Colorimetria , Nanopartículas Metálicas , Prata , Triptofano , beta-Ciclodextrinas , Triptofano/análise , Triptofano/química , Colorimetria/métodos , beta-Ciclodextrinas/química , Prata/química , Nanopartículas Metálicas/química , Estereoisomerismo , Espectrofotometria Ultravioleta , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA