Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.618
Filtrar
1.
J Environ Sci (China) ; 147: 487-497, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003064

RESUMO

Dissolved copper and iron ions are regarded as friendly and economic catalysts for peroxymonosulfate (PMS) activation, however, neither Cu(II) nor Fe(III) shows efficient catalytic performance because of the slow rates of Cu(II)/Cu(I) and Fe(III)/Fe(II) cycles. Innovatively, we observed a significant enhancement on the degradation of organic contaminants when Cu(II) and Fe(III) were coupled to activate PMS in borate (BA) buffer. The degradation efficiency of Rhodamine B (RhB, 20 µmol/L) reached up to 96.3% within 10 min, which was higher than the sum of individual Cu(II)- and Fe(III)- activated PMS process. Sulfate radical, hydroxyl radical and high-valent metal ions (i.e., Cu(III) and Fe(IV)) were identified as the working reactive species for RhB removal in Cu(II)/Fe(III)/PMS/BA system, while the last played a predominated role. The presence of BA dramatically facilitated the reduction of Cu(II) to Cu(I) via chelating with Cu(II) followed by Fe(III) reduction by Cu(I), resulting in enhanced PMS activation by Cu(I) and Fe(II) as well as accelerated generation of reactive species. Additionally, the strong buffering capacity of BA to stabilize the solution pH was satisfying for the pollutants degradation since a slightly alkaline environment favored the PMS activation by coupling Cu(II) and Fe(III). In a word, this work provides a brand-new insight into the outstanding PMS activation by homogeneous bimetals and an expanded application of iron-based advanced oxidation processes in alkaline conditions.


Assuntos
Cobre , Peróxidos , Poluentes Químicos da Água , Cobre/química , Poluentes Químicos da Água/química , Peróxidos/química , Catálise , Ferro/química , Rodaminas/química , Oxirredução
2.
Chemistry ; : e202402192, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087763

RESUMO

In this work, we used photoinert anhydrous cerium(III) chloride, to form a transient charge-transfer (CT) complex with NXS (N-bromosuccinimide or NBS and N-iodosuccinimide or NIS) in acetonitrile. These transient CT complexes acted as a semi-heterogeneous photocatalyst. These complexes allowed the Ce(III) ions to absorb light, turning them into strong electron donors that transferred electrons to NXS. This created halide radicals from NXS radical anions, helping to turn N-propargylamides into oxazole aldehydes. Experiments with DMPO and spin-trapping showed that a radical-based mechanism followed a single electron transfer (SET) pathway. Notably, CeCl3 was reused after the reaction without much decomposition, as it was regenerated and separated through simple filtration.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39136922

RESUMO

Research on the recovery of rare earth elements from wastewater has attracted increasing attention. Compared with other methods, biosorption is a simple, efficient, and environmentally friendly method for rare earth wastewater treatment, which has greater prospects for development. The objective of this study was to investigate the biosorption behavior and mechanism of Yarrowia lipolytica for five rare earth ions (La3⁺, Nd3⁺, Er3⁺, Y3⁺, and Sm3⁺) with a particular focus on biosorption behavior, biosorption kinetics, and biosorption isotherm. It was demonstrated that the biosorption capacity of Y. lipolytica at optimal conditions was 76.80 mg/g. It was discovered that the biosorption process complied with the pseudo-second-order kinetic model and the Langmuir biosorption isotherm, indicating that Y. lipolytica employed a monolayer chemical biosorption process to biosorb rare earth ions. Characterization analysis demonstrated that the primary functional groups involved in rare earth ion biosorption were amino, carboxyl, and hydroxyl groups. The cooperative biosorption of rare earth ions by Y. lipolytica was facilitated by means of surface complexation, ion exchange, and electrostatic interactions. These findings suggest that Y. lipolytica has the potential to be an effective biosorbent for the removal of rare earth elements from wastewater.

4.
Molecules ; 29(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39124953

RESUMO

A systematic study of extraction systems for the separation of f-elements using the tetradentate N,O-donor diamide of 1,10-phenanthroline-2,9-dicarboxylic acid (L) in various molecular and ionic solvents was performed. It was demonstrated that the nature of a diluent has a significant impact on solvent extraction of Am(III) and Ln(III) and the stoichiometry of formed complexes with f-elements. The mechanism of complexation and forms of complexes in different diluents were investigated by radiometric methods, UV-vis titration, and XRD.

5.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125963

RESUMO

The negative environmental and social impacts of food waste accumulation can be mitigated by utilizing bio-refineries' approach where food waste is revalorized into high-value products, such as prodigiosin (PG), using microbial bioprocesses. The diverse biological activities of PG position it as a promising compound, but its high production cost and promiscuous bioactivity hinder its wide application. Metal ions can modulate the electronic properties of organic molecules, leading to novel mechanisms of action and increased target potency, while metal complex formation can improve the stability, solubility and bioavailability of the parent compound. The objectives of this study were optimizing PG production through bacterial fermentation using food waste, allowing good quantities of the pure natural product for further synthesizing and evaluating copper(II) and zinc(II) complexes with it. Their antimicrobial and anticancer activities were assessed, and their binding affinity toward biologically important molecules, bovine serum albumin (BSA) and DNA was investigated by fluorescence emission spectroscopy and molecular docking. The yield of 83.1 mg/L of pure PG was obtained when processed meat waste at 18 g/L was utilized as the sole fermentation substrate. The obtained complexes CuPG and ZnPG showed high binding affinity towards target site III of BSA, and molecular docking simulations highlighted the affinity of the compounds for DNA minor grooves.


Assuntos
Complexos de Coordenação , Cobre , DNA , Simulação de Acoplamento Molecular , Prodigiosina , Soroalbumina Bovina , Zinco , Prodigiosina/química , Prodigiosina/metabolismo , Prodigiosina/farmacologia , Cobre/química , Cobre/metabolismo , Zinco/metabolismo , Zinco/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , DNA/metabolismo , DNA/química , Animais , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Humanos , Bovinos , Antineoplásicos/farmacologia , Antineoplásicos/química , Sítios de Ligação
6.
Bioresour Technol ; : 131292, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153701

RESUMO

Due to high humification, hyperthermophilic composting products (HP) show potential for remediating heavy metal pollution. However, the interaction between HP and heavy metals remains unclear. This study investigated the adsorption mechanism and soil remediation effect of HP on heavy metals. The results showed that the maximum adsorption capacity of HP increased by an average of 30.74 % compared to conventional composting products. HP transformed 34.87 % of copper, 42.55 % of zinc, and 35.63 % of lead from exchangeable and reducible forms into residual and oxidizable forms, thus reducing the soil risk level. In conclusion, HP significantly enhanced the adsorption of heavy metals and their transformation from unstable to stable forms, primarily due to the higher content of hydroxyl and carboxyl groups. This study aims to demonstrate the effectiveness of HP for remediating heavy metal pollution and to enhance the understanding of the underlying mechanism, which lays a foundation for waste utilization.

7.
J Food Sci ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39088724

RESUMO

The poor thermal stability of lactoferrin (LF) hinders its bioavailability and use in commercial food products. To preserve LF from thermal denaturation, complexation with other biopolymers has been studied. Here we present the complex formation conditions, structural stability, and functional protection of LF by α-lactalbumin (α-LA). The formation of the LF-α-LA complexes was dependent on pH, mass ratio, and ionic strength. Changing the formation conditions and cross-linking by transglutaminase impacted the turbidity, particle size, and zeta-potential of the resulting complexes. Electrophoresis, Fourier-transform infrared spectroscopy, and circular dichroism measurements suggest that the secondary structure of LF in the LF-α-LA complex was maintained after complexation and subsequent thermal treatments. At pH 7, the LF-α-LA complex protected LF from thermal aggregation and denaturation, and the LF retained its functional and structural properties, including antibacterial capacity of LF after thermal treatments. The improved thermal stability and functional properties of LF in the LF-α-LA complex are of interest to the food industry.

8.
Adv Mater ; : e2404164, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39091057

RESUMO

The precise manipulation of the porous structure of the nanofiltration membrane is critical for unlocking enhanced separation efficiencies across various liquids and solutes. Ultrathin films of crosslinked macrocycles, specifically cyclodextrins (CDs), have drawn considerable attention in this area owing to their ability to facilitate precise molecular separation with high liquid permeance for both polar and non-polar liquids, resembling Janus membranes. However, the functional role of the intrinsic cavity of CD in liquid transport remains inadequately understood, demanding immediate attention in designing nanofiltration membranes. Here, the synthesis of polyester nanofilms derived from crosslinked ß-CD, demonstrating remarkable Na2SO4 rejection (≈92 - 99.5%), high water permeance (≈4.4 - 37.4 Lm-2h-1bar-1), extremely low hexane permeance (<1 Lm-2h-1bar-1), and extremely high ratio (α > 500) of permeances for polar and non-polar liquids, is reported. Molecular simulations support the findings, indicating that neither the polar nor the non-polar liquids flow through the ß-CD cavity in the nanofilm. Instead, liquid transport predominantly occurs through the 2.2 nm hydrophilic aggregate pores. This challenges the presumed functional role of macrocyclic cavities in liquid transport and raises questions about the existence of the Janus structure in nanofiltration membranes produced from the macrocyclic monomers.

9.
Environ Pollut ; 360: 124685, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111531

RESUMO

Microplastics (MPs) have aroused growing environmental concerns due to their biotoxicity and vital roles in accelerating the spread of toxic elements. Illuminating the interactions between MPs and heavy metals (HMs) is crucial for understanding the transport and fate of HM-loaded MPs in specific environmentally relevant scenarios. Herein, the adsorption of copper (Cu2+) and zinc (Zn2+) ions over polyethylene (PE) and polyethylene terephthalate (PET) particulates before and after heat persulfate oxidation (HPO) treatment was comprehensively evaluated in simulated and real swine wastewaters. The effects of intrinsic properties (i.e., degree of weathering, size, type) of MPs and environmental factors (i.e., pH, ionic strength, and co-occurring species) on adsorption were investigated thoroughly. It was observed that HPO treatment expedites the fragmentation of pristine MPs, and renders MPs with a variety of oxygen-rich functional groups, which are likely to act as new active sites for binding both HMs. The adsorption of both HMs is pH- and ionic strength-dependent at a pH of 4-6. Co-occurring species such as humic acid (HA) and tetracycline (TC) appear to enhance the affinity of both aged MPs for Cu2+ and Zn2+ ions via bridging complexation. However, co-occurring nutrient species (e.g., phosphate and ammonia) demonstrate different impacts on the adsorption, improving uptake of Cu2+ by precipitation while lowering affinity for Zn2+ owing to the formation of soluble zinc-ammonia complex. Spectroscopic analysis indicates that the dominant adsorption mechanism mainly involves electrostatic interactions and surface complexation. These findings provided fundamental insights into the interactions between aged MPs and HMs in swine wastewaters and might be extended to other nutrient-rich wastewaters.

10.
Water Res ; 264: 122194, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39121821

RESUMO

Estimating the availability of phosphorus in soils and sediments is complicated by the diverse mineralogical properties of iron (hydr)oxides that control the environmental fate of phosphorus. Despite various surface complexation models have been developed, lack of generic phosphate affinity constants (logKPO4s) for iron (hydr)oxides hinders the prediction of phosphate adsorption to iron (hydr)oxides in nature. The aim of this work is to derive generic logKPO4s for the Charge Distribution-Multisite Complexation extended-Stern-Gouy-Chapman (CD-MUSIC-eSGC) model using a large phosphate adsorption database and previously derived generic protonation parameters. The optimized logKPO4s of goethite, hematite and ferrihydrite are located in a much narrower range than those in the RES3T database. Specifically, the logKPO4 ranges of FeOPO3, FeOPO2OH, FeOPO(OH)2, (FeO)2PO2, and (FeO)2POOH complexes were 17.40-18.00, 24.20-27.40, 27.90-29.80, 26.50-29.60, and 30.70-33.40, respectively. A simplified CD-MUSIC-eSGC model with species FeOPO2OH and (FeO)2PO2 and generic logKPO4 values 26.0 ± 0.9 and 27.9 ± 0.8, respectively, provides an accurate prediction of phosphate adsorption and dominant speciation to the iron (hydr)oxides at environmental pH and phosphate levels. For ferrihydrite at low pH and high phosphate levels the species FeOPO(OH)2 and (FeO)2POOH cannot be neglected. The simplified model expands the application boundaries of CD-MUSIC-eSGC model in predicting the phosphate adsorption on natural iron (hydr)oxides without laborious characterization.

11.
AAPS PharmSciTech ; 25(6): 169, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043992

RESUMO

Motion sickness also known as kinetosis is a condition in which there exists a disagreement between visually perceived movement and the vestibular system's sense of movement. Nausea, vomiting, dizziness, fatigue, and headache are the most common symptoms of motion sickness. This study mainly focuses on the taste masking of Promethazine Hydrochloride (PMZ) by inclusion complexation method, its formulation development in the chewing gum form by using directly compressible gum base HIG® and its quality and performance testing. Different molar ratios (1:1, 1:2, 1:3 and 1:4) of PMZ-cyclodextrin complexes were prepared by using ß-Cyclodextrin (ß-CD) as a taste masking agent. These complexes were evaluated for FTIR, DSC, % Entrapment Efficiency, % drug yield, and taste evaluation by E-Tongue. The optimized ratio was further evaluated by sophisticated analytical techniques such as Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). A central composite design (CCD) (3 ^2) was utilized to examine the effects of independent variables (amount of gum-X1 and amount of plasticizer-X2) on dependent variables (%CDRY1 and hardness Y2). The prepared gums were evaluated for drug content, organoleptic properties, in-vitro dissolution testing by fabricated disintegration apparatus, texture analysis, etc. The optimization statistics showed that on decreasing the amount of gum, in- vitro drug release increases and hardness decreases. The optimized batch MCG-2 of Promethazine MCG showed 92.34 ± 0.92% of drug release, whereas for marketed formulation (Phenergan®-25 mg) drug release value was 86.19 ± 1.88%. Results provided evidence that PMZ MCGs could be a better alternative to conventional tablet formulations with improved drug release, palatability and texture.


Assuntos
Antieméticos , Goma de Mascar , Prometazina , Paladar , beta-Ciclodextrinas , Prometazina/química , Prometazina/administração & dosagem , beta-Ciclodextrinas/química , Paladar/efeitos dos fármacos , Antieméticos/administração & dosagem , Antieméticos/química , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Difração de Raios X/métodos , Solubilidade , Composição de Medicamentos/métodos , Humanos , Enjoo devido ao Movimento/prevenção & controle
12.
Angew Chem Int Ed Engl ; : e202410454, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994649

RESUMO

Host-guest complexation offers a promising approach for mitigating surface defects in perovskite solar cells (PSCs). Crown ethers are the most widely used macrocyclic hosts for complexing perovskite surfaces, yet their supramolecular interactions and functional implications require further understanding. Here we show that the dipole moment of crown ethers serves as an indicator of supramolecular interactions with both perovskites and precursor salts. A larger dipole moment, achieved through the substitution of heteroatoms, correlates with enhanced coordination with lead cations. Perovskite films incorporating aza-crown ethers as additives exhibited improved morphology, reduced defect densities, and better energy-level alignment compared to those using native crown ethers. We report power-conversion efficiencies (PCEs) exceeding 25% for PSCs, which show enhanced long-term stability, and a record PCE of 21.5% for host-guest complexation-based perovskite solar modules with an active area of 14.0 cm2.

13.
Molecules ; 29(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38999072

RESUMO

The ongoing development of bacterial resistance to antibiotics is a global challenge. Research in that field is thus necessary. Analytical techniques are required for such a purpose. From this perspective, the focus was on atomic absorption spectrometry (AAS). Although it is old, AAS often offers unexpected potential. Of course, this should be exploited. The aim was therefore to demonstrate the versatility of the technique in antibacterial research. This is illustrated by various examples of its practical application. AAS can be used, for example, to confirm the identity of antibacterial compounds, for purity controls, or to quantify the antibiotics in pharmaceutical preparations. The latter allowed analysis without laborious sample preparation and without interference from other excipients. In addition, AAS can help elucidate the mode of action or resistance mechanisms. In this context, quantifying the accumulation of the antibiotic drug in the cell of (resistant) bacteria appears to play an important role. The general application of AAS is not limited to metal-containing drugs, but also enables the determination of some organic chemical antibiotics. Altogether, this perspective presents a range of applications for AAS in antibacterial research, intending to raise awareness of the method and may thus contribute to the fight against resistance.


Assuntos
Antibacterianos , Espectrofotometria Atômica , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Espectrofotometria Atômica/métodos
14.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000673

RESUMO

The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.

15.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38998737

RESUMO

Co-based catalysts have shown great promise for propane dehydrogenation (PDH) reactions due to their merits of environmental friendliness and low cost. In this study, ordered mesoporous molecular sieve-supported CoOx species (CoOx/Al-SBA-15 catalyst) were prepared by one-step organometallic complexation. The catalysts show worm-like morphology with regular straight-through mesoporous pores and high external specific surface area. These typical features can substantially enhance the dispersion of CoOx species and mass transfer of reactants and products. Compared with the conventional impregnation method, the 10CSOC (10 wt.% Co/Al-SBA-15 prepared by the organometallic complexation method) sample presents a smaller CoOx size and higher Co2+/Co3+ ratio. When applied to PDH reaction, the 10CSOC delivers higher propane conversion and propylene selectivity. Under the optimal conditions (625 °C and 4500 h-1), 10CSOC achieves high propane conversion (43%) and propylene selectivity (83%). This is attributed to the smaller and better dispersion of CoOx nanoparticles, more suitable acid properties, and higher content of Co2+ species. This work paves the way for the rational design of high-performance catalysts for industrially important reactions.

16.
Colloids Surf B Biointerfaces ; 242: 114081, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39003850

RESUMO

Hyaluronic acid (HA)-based tumor microenvironment-responsive nanocontainers are attractive candidates for anticancer drug delivery due to HA's excellent biocompatibility, biodegradability, and CD44-targeting properties. Nevertheless, the consecutive synthesis of stabilized, stealthy, responsive HA-based multicomponent nanomedicines generally requires multi-step preparation and purification procedures, leading to batch-to-batch variation and scale-up difficulties. To develop a facile yet robust strategy for promoted translations, a silica monomer containing a cross-linkable diethoxysilyl unit was prepared to enable in situ crosslinking without any additives. Further combined with the host-guest inclusion complexation between ß-cyclodextrin-grafted HA (HA-CD) and ferrocene-functionalized polymers, ferrocene-terminated poly(oligo(ethylene glycol) methyl ether methacrylate (Fc-POEGMA) and Fc-terminated poly(ε-caprolactone)-b-poly(3-(diethoxymethylsilyl)propyl(2-(methacryloyloxy)ethyl) carbamate) (Fc-PCL-b-PDESPMA), a reactive oxygen species (ROS)-sensitive supramolecular polymer construct, Fc-POEGMA/Fc-PCL-b-PDESPMA@HA-CD was readily fabricated to integrate stealthy POEGMA, tumor active targeting HA, and an in situ cross-linkable PDESPMA sequence. Supramolecular amphiphilic copolymers with two different POEGMA contents of 25 wt% (P1) and 20 wt% (P2) were prepared via a simple physical mixing process, affording two core-crosslinked (CCL) micelles via an in situ sol-gel process of ethoxysilyl groups. The P1-based CCL micelles show not only desired colloidal stability against high dilution, but also an intracellular ROS-mimicking environment-induced particulate aggregation that is beneficial for promoted intracellular release of the loaded cargoes. Most importantly, P1-based nanomedicines exhibited greater cytotoxicity in CD44 receptor-positive HeLa cells than that in CD44 receptor-negative MCF-7 cells. Overall, this work developed HA-based nanomedicines with sufficient extracellular colloidal stability and efficient intracellular destabilization properties for enhanced anticancer drug delivery via smart integration of in situ crosslinking and supramolecular complexation.

17.
Polymers (Basel) ; 16(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39065312

RESUMO

The electrostatic complexation of the protein beta-lactoglobulin (ß-LG) with the anionic polysaccharide chondroitin sulfate (CS) and the subsequent stabilization by thermal treatment were studied to achieve the well-defined nanoparticles (NPs). The formation of the well-defined NPs was obtained at pH 4 with a hydrodynamic radius from 60 to 80 nm. NP aggregation was observed at pH 1.5 because of the loss of the anionic charge of chondroitin sulfate on the surface of the NPs. After thermal treatment, the NPs exhibited stability against a pH increase to pH 7 while a stronger aggregation at pH 1.5 was observed. Core-shell structures were found at pH 7 after thermal treatment, indicating a possible mechanism of partial disintegration. The addition of Tween 80 (T80) before thermal treatment led to the formation of T80 self-assemblies inside the NPs. This caused an increase in the hydrophobicity of the inner and outer surfaces of the NPs as it was observed by fluorescence spectroscopy. The ζ-potential of the complexes and NPs was about -20 mV while the presence of T80 did not affect it. FTIR spectra verified changes of the secondary structure of ß-LG in its complexes with CS and T80. The thermally treated NPs exhibited high surface and overall hydrophobicity and stability in high salinity and biocompatible solutions. The thermally treated NPs showed colloidal and physicochemical stability for 1 month, which were enhanced by the addition of T80. Due to the nature of the precursors and their colloidal properties, the NPs are highly promising for applications as biocompatible drug delivery nanocarriers while T80 acts as an agent to modify their properties.

18.
Foods ; 13(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063264

RESUMO

Allergies towards gluten and legumes (such as, soybean, peanut, and faba bean) are a global issue and, occasionally, can be fatal. At the same time, an increasing number of households are shifting to plant protein ingredients from these sources, which application and consumption are limited by said food allergies. Children, the elderly, and people with immune diseases are particularly at risk when consuming these plant proteins. Finding ways to reduce or eliminate the allergenicity of gluten, soybean, peanut, and faba bean is becoming crucial. While thermal and pH treatments are often not sufficient, chemical processes such as glycation, polyphenol conjugation, and polysaccharide complexation, as well as controlled biochemical approaches, such as fermentation and enzyme catalysis, are more successful. Non-thermal treatments such as microwave, high pressure, and ultrasonication can be used prior to further chemical and/or biochemical processing. This paper presents an up-to-date review of promising chemical, biochemical, and non-thermal physical treatments that can be used in the food industry to reduce or eliminate food allergenicity.

19.
Sci Total Environ ; 948: 174856, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39034004

RESUMO

The diversity of soil adsorbents for arsenic (As) and the often-overlooked influence of manganese (Mn) on As(III) oxidation impose challenges in predicting As adsorption in soils. This study uses Mössbauer spectroscopy, X-ray diffraction of oriented clay, and batch experiments to develop a kinetic coupled multi-surface complexation model that characterizes As adsorbents in natural soils and quantifies their contributions to As adsorption. The model integrates dynamic adsorption behaviors and Mn-oxide interactions with unified thermodynamic and kinetic parameters. The results indicate that As adsorption is governed by five primary adsorbents: poorly crystalline Fe oxides, well crystalline Fe oxides, Fe-rich clay, Fe-depletion clay, and organic carbon (OC). Fe oxides dominate As adsorption at low As concentrations. However, at higher As concentrations, soils from carbonate strata, with higher content of Fe-rich clay, exhibit stronger As adsorption capabilities than soils from Quaternary sediment strata. The enrichment in Fe-rich clay can enhance the resistance of adsorbed As to reduction processes affecting Fe oxides. Additionally, extensive redox cycles in paddy fields increase OC levels, enhancing their As adsorption compared to upland fields. This model framework provides novel insights into the intricate dynamics of As within soils and a versatile tool for predicting As adsorption across diverse soils.

20.
Environ Sci Technol ; 58(31): 13890-13903, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39042037

RESUMO

Metal ions are liable to form metal-dissolved organic matter [dissolved organic matter (DOM)] complexes, changing the chemistry and chlorine reactivity of DOM. Herein, the impacts of iron and zinc ions (Fe3+ and Zn2+) on the formation of unknown chlorinated disinfection byproducts (Cl-DBPs) were investigated in a chlorination system. Fe3+ preferentially complexed with hydroxyl and carboxyl functional groups, while Zn2+ favored the amine functional groups in DOM. As a consequence, electron-rich reaction centers were created by the C-O-metal bonding bridge, which facilitated the electrophilic attack of α-C in metal-DOM complexes. Size-reactivity continuum networks were constructed in the chlorination system, revealing that highly aromatic small molecules were generated during the oxidation and decarbonization of metal-DOM complexes. Molecular transformation related to C-R (R represents complex sites) loss was promoted via metal complexation, including decarboxylation and deamination. Consequently, complexation with Fe3+ and Zn2+ promoted hydroxylation by the C-O-metal bonding bridge, thereby increasing the abundances of unknown polychlorinated Cl-DBPs by 9.6 and 14.2%, respectively. The study provides new insights into the regulation of DOM chemistry and chlorine reactivity by metal ions in chlorination systems, emphasizing that metals increase the potential health risks of drinking water and more scientific control standards for metals are needed.


Assuntos
Desinfecção , Halogenação , Metais/química , Íons , Purificação da Água , Cloro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA