RESUMO
Groundwater contamination by chlorinated solvents causes potential threats to water resources and human health. Therefore, it is important to develop effective technologies to remediate contaminated groundwater. This study uses biodegradable hydrophilic polymers, hydroxypropyl methylcellulose (HPMC), hydroxyethyl cellulose (HEC) and polyvinyl pyrrolidone (PVP) as binders to manufacture persulfate (PS) tablets for the sustained release of persulfate to treat trichloroethylene (TCE) in groundwater. The release time for different tablets decreases in the order: HPMC (8-15 days) > HEC (7-8 days) > PVP (2-5 days). The efficiency with which persulfate is released is: HPMC (73-79%) > HEC (60-72%) > PVP (12-31%). HPMC is the optimal binder for the manufacture of persulfate tablets and persulfate is released from a tablet of HPMC/PS ratio (wt/wt) of 4/3 for 15 days at a release rate of 1127 mg/day. HPMC/PS/biochar (BC) ratios (wt/wt/wt) between 1/1/0.02 and 1/1/0.0333 are suitable for PS/BC tablets. PS/BC tablets release persulfate for 9-11 days at release rates of 1243 to 1073 mg/day. The addition of too much biochar weakens the structure of the tablets, which results in a rapid release of persulfate. TCE is oxidized by a PS tablet with an efficiency of 85% and a PS/BC tablet eliminates more TCE, with a removal efficiency of 100%, due to oxidation and adsorption during the 15 days of reaction. Oxidation is the predominant mechanism for TCE elimination by a PS/BC tablet. The adsorption of TCE by BC fits well with the pseudo-second-order kinetics and the pseudo-first-order kinetics, which describes the removal of TCE by PS and PS/BC tablets. The results of this study show that a PS/BC tablet can be used in a permeable reactive barrier for long-term passive remediation of groundwater.
Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Humanos , Tricloroetileno/química , Poluentes Químicos da Água/análise , Oxirredução , Água Subterrânea/químicaRESUMO
A hydrogel based on poly(vinyl alcohol) (V), Premna Oblongifolia Merr. extract (O), glutaraldehyde (G), and carbon nanotubes (C) has been synthesized in search of candidates to develop controlled-release fertilizers (CRF). Referring to previous studies, O and C can be considered as two materials that have potential as modifiers in synthesizing CRF. This work is comprised of hydrogel synthesis, their characterisation, including measuring swelling ratio (SR) and water retention (WR) of VOGm , VOGe , VOGm C3 , VOGm C5 , VOGm C7 , VOGm C7 -KCl, and release behaviour of KCl from VOGm C7 -KCl. We found that C interacts physically with VOG, increased the surface roughness of VOGm , and reduced the VOGm crystallite size. The addition of KCl into VOGm C7 reduced the pore size and increased the structural density of VOGm C7 . The thickness and the C content of VOG affected its SR and WR. The addition of KCl into VOGm C7 reduced its SR, but did not significantly affect its WR.
RESUMO
Controlled release materials (CRMs) are an emerging oxidant delivery technique for in-situ chemical oxidation (ISCO) that solve the problems of contaminant rebound, backflow and wake during groundwater remediation. CRMs were fabricated using ordered mesoporous manganese oxide (O-MnOx) and sodium persulfate (Na2S2O8) as active components, for the removal of antibiotic pollutants from groundwater. In both static and dynamic groundwater environments, persulfate can first be activated by O-MnOx within CRMs to form sulfate radicals and hydroxyl radicals, with these radicals subsequently dissolving out from the CRMs and degrading tetracycline (TC). Due to their excellent persulfate activation performance and good stability, the constructed CRMs could effectively degrade TC in both static and dynamic simulated groundwater systems over a long period (>21 days). The TC removal rate reached >80 %. Changing the added content of O-MnOx and persulfate could effectively regulate the performance of the CRMs during TC degradation in groundwater. The process and products of TC degradation in the dynamic groundwater system were the same as in the static groundwater system. Due to the strong oxidizing properties of sulfate radicals and hydroxyl radicals, TC molecules were completely mineralized within the groundwater systems, resulting in only trace levels of degradation products being detectable, with low- or non-toxicity. Therefore, the CRMs constructed in this study exhibited good potential for practical application in the remediation of organic pollutants from both static and dynamic groundwater environments.
Assuntos
Água Subterrânea , Poluentes Químicos da Água , Antibacterianos , Preparações de Ação Retardada , Água Subterrânea/química , Radical Hidroxila , Oxirredução , Sulfatos/química , Tetraciclina , Poluentes Químicos da Água/análiseRESUMO
In this study, a biodegradable binder, hydroxypropyl methyl cellulose (HPMC), was used for the first time to mix with persulfate powder for developing novel persulfate-releasing tablets to remediate trichloroethylene (TCE)-contaminated groundwater. To obtain feasible parameters for the preparation of persulfate tablets, different pressures, HPMC/tablet mass ratios, and persulfate dosages were evaluated. The results showed that the persulfate tablet released 2868 mg-persulfate/day for 12 days under the optimal manufacturing parameters of HPMC/tablet mass ratio of 0.5 and pressure of 4.90 × 108 N/m2. Persulfate diffusion and gel layer erosion were dominant mechanisms for controlling the persulfate released in water. The persulfate release time and rate can be controlled by adjusting the persulfate dosage at the optimal HPMC/tablet ratio. In the column experiment, TCE with an initial concentration of 70 mg/L reached 55% removal efficiency by the tablet, which showed that the developed tablet was capable of degrading highly concentrated TCE. The results of electron spin resonance (ESR) spectroscopy showed that both SO4-· and ·OH were responsible for the oxidation of TCE. During 150 days of incubation, the biodegrading efficiency of HPMC by microbes in soil and activated sludge was 67% and 80%, respectively, under aerobic conditions, while 58% of HPMC was removed by soil bacteria under anaerobic conditions. The results showed that persulfate tablets could be used as a passive groundwater remediation system. There is no waste generated after persulfate is completely released during groundwater remediation. The developed persulfate tablets are environmentally friendly and meet the green remediation aspect.