Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 472
Filtrar
2.
Environ Pollut ; 360: 124698, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39122171

RESUMO

Although pharmaceutically-active compounds (PhACs) are increasingly being found to be present in marine environments, their presence in coral reefs, already under threat from various stressors, has remains unexplored. This study focused on PhAC presence in two stony-coral genera, collected from different depths and sites in the Red Sea. The findings reveal the presence of ten different PhACs, with elevated concentrations detected in corals from shallow sites and in areas with heavy human activity. Notably, all samples contained at least one PhAC, with the antibiotic sulfamethoxazole being the most prevalent compound, detected in 93% of the samples, at concentrations ranging from 1.5 to 2080 ng/g dry weight (dw) tissue, with an average concentration of 106 ng/g dw. These findings underscore the urgent need for conservation initiatives aimed at protecting coral-reef ecosystems from the escalating threat of anthropogenic contamination, including such potential risks as the development of antibiotic resistance in marine organisms and the disruption of critical spawning synchrony among coral populations.


Assuntos
Antozoários , Recifes de Corais , Monitoramento Ambiental , Poluentes Químicos da Água , Antozoários/efeitos dos fármacos , Animais , Oceano Índico , Poluentes Químicos da Água/análise , Preparações Farmacêuticas/análise
3.
Mar Pollut Bull ; 206: 116741, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39089204

RESUMO

This study explores microplastic and cellulosic microparticle occurrences in the NE Atlantic, focusing on the Porcupine Bank Canyon and Porcupine Seabight. Water samples from depths ranging between 605 and 2126 m and Lophelia pertusa coral samples from 950 m depth were analysed. Microparticles were detected in deep-water habitats, with concentrations varying from 2.33 to 9.67 particles L-1 in the Porcupine Bank Canyon, notably lower at greater depths. This challenges the assumption of deeper habitats solely acting as microplastic sinks. We also found evidence of microparticle adsorption and ingestion by L. pertusa. The presence of microparticles in cold-water corals underscores their vulnerability to pollutants. Furthermore, the dominance of rayon microparticles in both water and coral samples raises questions about marine pollution sources, potentially linked to terrestrial origins. This research emphasises the critical need for comprehensive exploration and conservation efforts in deep-sea environments, especially to protect vital ecosystems like L. pertusa reefs.


Assuntos
Antozoários , Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Animais , Microplásticos/análise , Poluentes Químicos da Água/análise , Oceano Atlântico , Ecossistema , Celulose/análise , Recifes de Corais
4.
Life (Basel) ; 14(8)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39202756

RESUMO

Cnidarians are among the most important diploblastic organisms, elucidating many of the early stages of Metazoan evolution. However, Cnidarian fossils from Cambrian deposits have been rarely documented, mainly due to difficulties in identifying early Cnidarian representatives. Halysites, a tabulate coral from Silurian reef systems, serves as a crucial taxon for interpreting Cambrian cnidarians. Traditionally, the biological characteristics of Halysites have been analyzed using methods limited by pretreatment requirements (destructive testing) and the chamber size capacity of relevant analytical instruments. These constraints often lead to irreversible information loss and inadequate data extraction. This means that, to date, there has been no high-resolution three-dimensional mineralization analysis of Halysites. This study aims to introduce novel, non-destructive techniques to analyze the internal structure and chemical composition of Halysites. Furthermore, it seeks to elucidate the relationship between coral organisms and biomineralization in reef settings and to compare Silurian Tabulata with putative Cambrian cnidarians. Techniques such as micro-X-ray fluorescence spectrometry (micro-XRF), micro-X-ray computed tomography (micro-CT), and scanning electron microscopy (SEM) were employed in this research. With the help of high-resolution micro-CT scanning, we identify the growth pattern of Halysites, showing both lateral and vertical development. The lateral multiple-branching growth pattern of Halysites corals is first established herein. The flaggy corallite at the initial stage of branching is also observed. The micro-XRF mapping results reveal the occurrence of septa spines for Halysites, a trait previously thought rare or absent. Additionally, the ratio of coral volume to the surrounding rock was assessed, revealing that Halysites reefs were relatively sparse (volume ratio = ~30%). The cavities between Halysites likely provided more space for other organisms (e.g., rugose corals and bryozoans) when compared to other coral reef types. Additionally, we provide a comparative analysis of post-Cambrian colonial calcareous skeletons, offering insights into the structural features and growth patterns of early skeletal metazoans across the Ediacaran-Cambrian boundary.

5.
Environ Pollut ; 361: 124839, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209051

RESUMO

Parabens, bisphenols (BPs), and triclosan (TCS) are common environmental phenols widely applied in industrial products, pharmaceuticals, and personal care products. They are endocrine disruptors and pervade the natural environment, causing significant detrimental impacts on ecosystems, including marine habitats. Therefore, in this study, 40 samples comprising coral polyps, algae, and sediments were collected from Sanya, Hainan Province, China, in which the presence and compositional profiles of parabens, BPs, and TCS were examined to identify their fate in the oceans. The results unveiled the ubiquitous occurrence of at least one paraben or bisphenol in all samples, with TCS detected in over 80% of cases. Notably, coral samples contained the most contaminants (median concentration: 9.42 ng/g dry weight-dw), followed by sediment samples (5.95 ng/g dw) and algal samples (3.58 ng/g dw). Attributed to their broadest application, methylparaben (MeP) and propylparaben (PrP) emerged as the primary paraben constituents. MeP displayed the highest median concentration in coral samples (4.42 ng/g dw), probably related to its high-water solubility and the filtration mechanism employed by the coral polyps during seawater intake. Intriguingly, bisphenol P (BPP) superseded bisphenol A (BPA) as the dominant bisphenol, especially in the algal samples, probably owing to the lipophilic character of BPP and the enhanced biodegradability of BPA within aquatic environments. The highest concentration of TCS (3.44 ng/g dw) was found in the sediment samples, associated with its long half-life in the sediments. Furthermore, the correlation between multiple parabens and TCS implies their co-use to augment antimicrobial efficacy. Future research should prioritize the examination of these phenols in diverse marine environmental media. Corresponding toxicological experiments should be conducted to visualize their transport dynamics, degradation byproducts, and toxicity to marine biota to gain insights into the risks they pose to the marine ecosystem.

6.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125787

RESUMO

The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.


Assuntos
Antozoários , Evolução Molecular , Genoma Mitocondrial , Filogenia , Antozoários/genética , Antozoários/classificação , Animais , Composição de Bases
7.
Ecology ; 105(9): e4368, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39106878

RESUMO

Demographic processes that ensure the recovery and resilience of marine populations are critical as climate change sends an increasing proportion on a trajectory of decline. Yet for some populations, recovery potential remains high. We conducted annual monitoring over 9 years (2012-2020) to assess the recovery of coral populations belonging to the genus Pocillopora. These populations experienced a catastrophic collapse following a severe typhoon in 2009. From the start of the monitoring period, high initial recruitment led to the establishment of a juvenile population that rapidly transitioned to sexually mature adults, which dominated the population within 6 years after the disturbance. As a result, coral cover increased from 1.1% to 20.2% during this time. To identify key demographic drivers of recovery and population growth rates (λ), we applied kernel-resampled integral projection models (IPMs), constructing eight successive models to examine annual change. IPMs were able to capture reproductive traits as key demographic drivers over the initial 3 years, while individual growth was a continuous key demographic driver throughout the entire monitoring period. IPMs further detected a pulse of reproductive output subsequent to two further Category 5 typhoon events during the monitoring period, exemplifying key mechanisms of resilience for coral populations impacted by disturbance. Despite rapid recovery, (i.e., increased coral cover, individual colony growth, low mortality), IPMs estimated predominantly negative values of λ, indicating a declining population. Indeed, while λ translates to a change in the number of individuals, the recovery of coral populations can also be driven by an increase in the size of surviving colonies. Our results illustrate that accumulating long-term data on historical dynamics and applying IPMs to extract demographic drivers are crucial for future predictions that are based on comprehensive and robust understandings of ecological change.


Assuntos
Antozoários , Crescimento Demográfico , Antozoários/fisiologia , Animais , Tempestades Ciclônicas , Recifes de Corais , Modelos Biológicos , Mudança Climática , Dinâmica Populacional , Conservação dos Recursos Naturais
8.
Zookeys ; 1205: 205-222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957220

RESUMO

A new zooxanthellate scleractinian coral, Paragoniastreavariabilis Kishi, Nomura & Fukami, sp. nov. (Scleractinia, Merulinidae), is described from non-coral reef regions of Japan and northern Taiwan. This new species was previously recognized as a morphological variant of Paragoniastreadeformis (Veron, 1990) and can be morphologically distinguished from that species by lacking groove-and-tube structures on corallite wall joints, and by having larger calices, numerous septa, and up to three corallites in one valley. The new species also formed an independent clade from its congeners, P.australensis (Milne Edwards & Haime, 1857), P.deformis and P.russelli (Wells, 1954), in the molecular phylogeny based on the mitochondrial intergenic region and nuclear ribosomal internal transcribed spacers.

9.
J Chem Ecol ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958678

RESUMO

Characteristics such as calcareous morphology and life cycle are used to understand the ecology of calcified rhodophytes. However, there is limited information regarding their chemical profiles and biological activities. Therefore, a systematic review (PRISMA) was conducted to assess the influence of the chemistry of calcareous rhodophytes on ecological interactions in the marine environment. The keywords used were: ["Chemical AND [Ecology OR Interaction OR Response OR Defense OR Effect OR Cue OR Mediated OR Induce]"] AND ["Red Seaweed" OR "Red Macroalgae" OR Rhodophy?] AND [Calcified OR Calcareous] in Science Direct, Scielo, PUBMED, Springer, Web of Science, and Scopus. Only English articles within the proposed theme were considered. Due to the low number of articles, another search was conducted with three classes and 16 genera. Finally, 67 articles were considered valid. Their titles, abstracts, and keywords were analyzed using IRaMuTeQ through factorial, hierarchical and similarity classification. Most of the studies used macroalgae thallus to evaluate chemical mediation while few tested crude extracts. Some substances were noted as sesquiterpene (6-hydroxy-isololiolide), fatty acid (heptadeca5,8,11-triene) and dibromomethane. The articles were divided into four classes: Herbivory, Competition, Settlement/Metamorphosis, and Epiphytism. Crustose calcareous algae were associated with studies of Settlement/Metamorphosis, while calcified algae were linked to herbivory. Thus, the importance of chemistry in the ecology of these algae is evident,and additional studies are needed to identify the substances responsible for ecological interactions. This study collected essential information on calcified red algae, whose diversity appears to be highly vulnerable to the harmful impacts of ongoing climate change.

10.
Mar Biotechnol (NY) ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030411

RESUMO

In the background of global warming, coral bleaching induced by elevated seawater temperature is the primary cause of coral reef degradation. Coral microbiome engineering using the beneficial microorganisms for corals (BMCs) has become a hot spot in the field of coral reef conservation and restoration. Investigating the potential of alleviating thermal stress by quorum quenching (QQ) bacteria may provide more tools for coral microbial engineering remediation. In this study, QQ bacteria strain Pseudoalteromonas piscicida SCSIO 43740 was screened among 75 coral-derived bacterial strains, and its quorum sensing inhibitor (QSI) compound was isolated and identified as 2,4-di-tert-butylphenol (2,4-DTBP). Then, the thermal stress alleviating potential of QQ bacteria on coral Pocillopora damicornis was tested by a 30-day controlled experiment with three different treatments: control group (Con: 29 °C), high temperature group (HT: 31 °C), and the group of high temperature with QQ bacteria inoculation (HTQQ: 31 °C + QQ bacteria). The results showed that QQ bacteria SCSIO 43740 inoculation can significantly mitigate the loss of symbiotic algae and impairment of photosynthesis efficiency of coral P. damicornis under thermal stress. Significant difference in superoxide dismutase (SOD) and catalase (CAT) enzyme activities between HT and HTQQ was not observed. In addition, QQ bacteria inoculation suppressed the coral microbial community beta-dispersion and improved the stability of microbial co-occurrence network under thermal stress. It was suggested that QQ bacteria inoculation can alleviate coral thermal stress via reshaping microbial interaction and maintain community stability of coral microbiome. This study provided new evidence for the probiotic function of QQ bacteria in corals, which shedding light on the development of new microbiological tools for coral reef conservation.

11.
Biodivers Data J ; 12: e125914, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070712

RESUMO

Species identification of stony corals (Scleractinia), which are regulated under the Convention on International Trade in Endangered Species of Wild Fauna and Flora, is critical for effective control of harvest quotas, enforcement of trade regulations and species conservation in general. DNA barcoding has the potential to enhance species identification success, depending on the specific taxon concerned and genetic markers used. For Acropora, DNA barcoding, based on the mitochondrial putative control region (mtCR) and the nuclear PaxC intron (PaxC), has been commonly used for species identification and delimitation, but the reliability and robustness of these loci remain contentious. Therefore, we sought to verify the applicability of this approach. In this study, we obtained 127 Acropora colonies from the aquarium trade to test the effectiveness of barcoding mtCR and PaxC for species identification. We were able to recover sequences for both loci in over half of the samples (n = 68), while gene amplification and sequencing of mtCR (n = 125) outperformed PaxC (n = 70). Amongst the 68 samples with both loci recovered, just a single sample could be unambiguously identified to species. Preliminary identities, based on only one gene, were assigned for 40 and 65 samples with mtCR and PaxC, respectively. Further analyses of 110 complete mitochondrial genomes obtained from GenBank showed that, despite the full length of the sequences, only eight species were delimited, of which only three species were correspondingly monophyletic. Therefore, we conclude that the commonly used DNA barcoding markers for Acropora are ineffective for accurate species assignments due to limited variability in both markers and even across the entire mitochondrial genome. Therefore, we propose that barcoding markers should generally not be the only means for identifying corals.

12.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-39030686

RESUMO

Reef-building corals depend on an intricate community of microorganisms for functioning and resilience. The infection of coral-associated bacteria by bacteriophages can modify bacterial ecological interactions, yet very little is known about phage functions in the holobiont. This gap stems from methodological limitations that have prevented the recovery of high-quality viral genomes and bacterial host assignment from coral samples. Here, we introduce a size fractionation approach that increased bacterial and viral recovery in coral metagenomes by 9-fold and 2-fold, respectively, and enabled the assembly and binning of bacterial and viral genomes at relatively low sequencing coverage. We combined these viral genomes with those derived from 677 publicly available metagenomes, viromes, and bacterial isolates from stony corals to build a global coral virus database of over 20,000 viral genomic sequences spanning four viral realms. The tailed bacteriophage families Kyanoviridae and Autographiviridae were the most abundant, replacing groups formerly referred to as Myoviridae and Podoviridae, respectively. Prophage and CRISPR spacer linkages between these viruses and 626 bacterial metagenome-assembled genomes and bacterial isolates showed that most viruses infected Alphaproteobacteria, the most abundant class, and less abundant taxa like Halanaerobiia and Bacteroidia. A host-phage-gene network identified keystone viruses with the genomic capacity to modulate bacterial metabolic pathways and direct molecular interactions with eukaryotic cells. This study reveals the genomic basis of nested symbioses between bacteriophage, bacteria, and the coral host and its endosymbiotic algae.


Assuntos
Antozoários , Bactérias , Bacteriófagos , Genoma Viral , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , Antozoários/virologia , Antozoários/microbiologia , Animais , Bactérias/virologia , Bactérias/genética , Bactérias/classificação , Metagenoma , Simbiose , Recifes de Corais , Viroma/genética , Prófagos/genética
13.
New Phytol ; 243(6): 2130-2145, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39049585

RESUMO

Coral thermal bleaching resilience can be improved by enhancing photosymbiont thermal tolerance via experimental evolution. While successful for some strains, selection under stable temperatures was ineffective at increasing the thermal threshold of an already thermo-tolerant photosymbiont (Durusdinium trenchii). Corals from environments with fluctuating temperatures tend to have comparatively high heat tolerance. Therefore, we investigated whether exposure to temperature oscillations can raise the upper thermal limit of D. trenchii. We exposed a D. trenchii strain to stable and fluctuating temperature profiles, which varied in oscillation frequency. After 2.1 yr (54-73 generations), we characterised the adaptive responses under the various experimental evolution treatments by constructing thermal performance curves of growth from 21 to 31°C for the heat-evolved and wild-type lineages. Additionally, the accumulation of extracellular reactive oxygen species, photophysiology, photosynthesis and respiration rates were assessed under increasing temperatures. Of the fluctuating temperature profiles investigated, selection under the most frequent oscillations (diurnal) induced the greatest widening of D. trenchii's thermal niche. Continuous selection under elevated temperatures induced the only increase in thermal optimum and a degree of generalism. Our findings demonstrate how differing levels of thermal homogeneity during selection drive unique adaptive responses to heat in a coral photosymbiont.


Assuntos
Antozoários , Fotossíntese , Seleção Genética , Simbiose , Temperatura , Animais , Antozoários/fisiologia , Antozoários/efeitos da radiação , Simbiose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Termotolerância/fisiologia
14.
Molecules ; 29(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38893370

RESUMO

Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.


Assuntos
Antozoários , Diterpenos , Diterpenos/química , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Animais , Antozoários/química , Antiprotozoários/química , Antiprotozoários/farmacologia , Antiprotozoários/isolamento & purificação , Região do Caribe , Estrutura Molecular , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Espectroscopia de Ressonância Magnética , Antituberculosos/química , Antituberculosos/farmacologia , Antituberculosos/isolamento & purificação
15.
Methods Enzymol ; 699: 373-394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38942511

RESUMO

Coral terpenes are important molecules with numerous applications. Here, we describe a robust and simple method to produce coral terpene scaffolds at scale. As an example of the approach, here we discover, express, and characterize further klysimplexin R synthases, expanding the known enzymology of soft coral terpene cyclases. We hope that the underlying method described will enable widespread basic research into the functions of coral terpenes and their biosynthetic genes, as well as the commercial development of biomedically and technologically important molecules.


Assuntos
Antozoários , Terpenos , Antozoários/enzimologia , Antozoários/metabolismo , Antozoários/genética , Terpenos/metabolismo , Terpenos/química , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alquil e Aril Transferases/metabolismo , Alquil e Aril Transferases/genética
16.
Sci Rep ; 14(1): 14514, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914624

RESUMO

The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.


Assuntos
Antozoários , Probióticos , Antozoários/genética , Antozoários/microbiologia , Antozoários/metabolismo , Animais , Oceano Índico , Genômica/métodos , Bactérias/genética , Microbiota
17.
Mar Pollut Bull ; 205: 116631, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38917503

RESUMO

The causes of the physiological effects of microplastic pollution, potentially harming reef-building corals, are unclear. Reasons might include increased energy demands for handling particles and immune reactions. This study is among the first assessing the effects of long-term microplastic exposure on coral physiology at realistic concentrations (200 polyethylene particles L-1). The coral species Acropora muricata, Pocillopora verrucosa, Porites lutea, and Heliopora coerulea were exposed to microplastics for 11 months, and energy reserves, metabolites, growth, and photosymbiont state were analyzed. Results showed an overall low impact on coral physiology, yet species-specific effects occurred. Specifically, H. coerulea exhibited reduced growth, P. lutea and A. muricata showed changes in photosynthetic efficiency, and A. muricata variations in taurine levels. These findings suggest that corals may possess compensatory mechanisms mitigating the effects of microplastics. However, realistic microplastic concentrations only occasionally affected corals. Yet, corals exposed to increasing pollution scenarios will likely experience more negative impacts.


Assuntos
Antozoários , Recifes de Corais , Microplásticos , Fotossíntese , Polietileno , Poluentes Químicos da Água , Animais , Antozoários/efeitos dos fármacos , Antozoários/fisiologia , Microplásticos/toxicidade , Fotossíntese/efeitos dos fármacos , Polietileno/toxicidade , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental
18.
Mar Environ Res ; 198: 106538, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782662

RESUMO

Cold water corals (CWC) provide habitats for many organisms including demersal fish. Bottom trawl observations have indicated a co-occurrence of the fish Helicolenus dactylopterus with CWC reefs, but a detailed understanding of this relation is lacking. To better understand the nature of this relation we have analyzed 85 video-lines from ROV dives conducted at 25-1700 m depth off Morocco, Mauritania, and Senegal in 2020 and 2021. We annotated abundance, size, and behavior of the 552 specimens observed (32% juveniles and 68% adults), of these 82% occurred in CWC habitats at 400-600 m depth. Both juveniles and adults were observed standing on the seafloor. Our observations are discussed considering available knowledge on feeding ecology and life cycle of H. dactylopterus. Our findings show that CWC provides an essential habitat for this species at least during parts of its lifecycle, however, more behavioral studies are needed for an in-depth understanding of this association.


Assuntos
Antozoários , Ecossistema , Animais , Antozoários/fisiologia , Recifes de Corais , Marrocos , Temperatura Baixa , Mauritânia
19.
Sci Total Environ ; 931: 172920, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38701933

RESUMO

Scleractinian corals are capable of accumulating polycyclic aromatic hydrocarbons (PAHs) in reef environments; however, the mechanism behind their PAHs tolerance is unknown. This study investigated the occurrence and bioaccumulation of PAHs in coral reef ecosystems and examined the physiological responses induced by PAHs in coral hosts and their algal symbionts, the massive coral Galaxea fascicularis and branching coral Pocillopora damicornis. G. fascicularis had a higher PAHs accumulation capacity than P. damicornis. Both the coral hosts and algal symbionts preferentially accumulated acenaphthene, dibenzo(a,h)anthracene, and benzo(a)pyrene. The accumulated PAHs by G. fascicularis and P. damicornis hosts was accompanied by a reduction in detoxification ability. The accumulated PAHs could induce oxidative stress in P. damicorni hosts, thus G. fascicularis demonstrated a greater tolerance to PAHs compared to P. damicornis. Meanwhile, their algal symbionts had fewer physiological responses to accumulated PAHs than the coral hosts. Negative effects were not observed with benzo(a)pyrene. Taken together, these results suggest massive and branching scleractinian corals have different PAHs bioaccumulation and tolerance mechanisms, and indicate that long-term PAHs pollution could cause significant alterations of community structures in coral reef ecosystems.


Assuntos
Antozoários , Recifes de Corais , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Antozoários/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Bioacumulação , Monitoramento Ambiental , Simbiose
20.
PeerJ ; 12: e17182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646482

RESUMO

Background: Corallium japonicum, a prized resource in Japan, plays a vital role in traditional arts and fishing industries. Because of diminished stock due to overexploitation, ongoing efforts are focused on restoration through transplantation. This study aimed to enhance our understanding of the reproductive biology of these valuable corals and find more efficient methods for sex determination, which may significantly contribute to conservation initiatives. Methods: We used 12 three-month aquarium reared C. japonicum colony fragments, conducted histological analysis for maturity and sex verification, and performed transcriptome analysis via de novo assembly and mapping using the C. rubrum transcriptome to explore gene expression differences between female and male C. japonicum. Results: Our histological observations enabled sex identification in 33% of incompletely mature samples. However, the sex of the remaining 67% of samples, classified as immature, could not be identified. RNA-seq yielded approximately 21-31 million short reads from 12 samples. De novo assembly yielded 404,439 highly expressed transcripts. Among them, 855 showed significant differential expression, with 786 differentially expressed transcripts between females and males. Heatmap analysis highlighted 283 female-specific and 525 male-specific upregulated transcripts. Transcriptome assembly mapped to C. rubrum yielded 28,092 contigs, leading to the identification of 190 highly differentially expressed genes, with 113 upregulated exclusively in females and 70 upregulated exclusively in males. Blastp analysis provided putative protein annotations for 83 female and 72 male transcripts. Annotation analysis revealed that female biological processes were related to oocyte proliferation and reproduction, whereas those in males were associated with cell adhesion. Discussion: Transcriptome analysis revealed sex-specific gene upregulation in incompletely mature C. japonicum and shared transcripts with C. rubrum, providing insight into its gene expression patterns. This study highlights the importance of using both de novo and reference-based assembly methods. Functional enrichment analysis showed that females exhibited enrichment in cell proliferation and reproduction pathways, while males exhibited enrichment in cell adhesion pathways. To the best of our knowledge, this is the first report on the gene expressions of each sex during the spawning season. Our findings offer valuable insights into the physiological ecology of incompletely mature red Japanese precious corals and suggest a method for identifying sex using various genes expressed in female and male individuals. In the future, techniques such as transplantation, artificial fertilization, and larval rearing may involve sex determination methods based on differences in gene expression to help conserve precious coral resources and ecosystems.


Assuntos
Antozoários , Gametogênese , Transcriptoma , Animais , Feminino , Masculino , Antozoários/genética , Antozoários/metabolismo , Gametogênese/genética , Perfilação da Expressão Gênica/métodos , Japão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA