Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 114: 154778, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36996529

RESUMO

BACKGROUND: Cortex Dictamni (CD) has been associated with an increased risk of liver injury, which may be attributable to the metabolic activation of its furan-containing components (FCC). However, the hepatotoxic potencies of these FCCs and the mechanisms behind the differences in their toxicity intensity remain unknown. METHODS: The constituents of CD extract were determined by LC-MS/MS. Potentially toxic FCCs were screened by a previously published method. Hepatotoxicity of potentially toxic FCCs was evaluated in cultured mouse primary hepatocytes and mice. The ability to deplete hepatic glutathione (GSH), along with the formation of the corresponding GSH conjugates, resulting from the metabolic activation was determined ex vivo in mice. Intrinsic clearance rates (CLint,Vmax/Km) were assessed by a microsome-bases assay. RESULTS: A total of 18 FCCs were detected in CD extract. Among them, four FCCs, including rutaevin (RUT), limonin (LIM), obacunone (OBA) and fraxinellone (FRA) were found to be bioactivated in microsomal incubations. Only FRA displayed significant hepatotoxicity in vitro and in vivo. Similarly, FRA caused GSH depletion and GSH conjugation the most in vivo. The order of CLint for the four FCCs was FRA>>OBA>LIM>RUT. CONCLUSION: FRA is the major toxic FCC component of hepatotoxic CD extract. The hepatotoxicity of FCCs is closely related to the efficiency of their metabolic activation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Espectrometria de Massas em Tandem , Camundongos , Animais , Ativação Metabólica , Cromatografia Líquida , Furanos , Extratos Vegetais , Glutationa/metabolismo
2.
J Ethnopharmacol ; 304: 116023, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36535327

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dermatitis is a common clinical chronic inflammatory skin disease, which incidence has been on the rise in recent years. It not only seriously affects the physical and mental health of patients but also increase economic burden. Currently, commonly used drugs such as corticosteroids, anti-histamines have certain side effects or are expensive. Therefore, the search for an alternative therapy for dermatitis has important clinical significance. Cortex Dictamni is a commonly used traditional Chinese medicine for expelling wind and itching, but its mechanism for treating dermatitis is still unclear. MATERIALS AND METHODS: Network pharmacological analysis was performed to predict the potential targets and pathways of Cortex Dictamni against dermatitis. Molecular docking was used to assess the binding affinity of active compounds and core targets. By repeatedly stimulating the ears with 1-fluoro-2,4-dinitrobenzene (DNFB), an atopic dermatitis (AD) mouse model was established in order to study the anti-dermatitis effect of Cortex Dictamni. The skin thickness and inflammatory cell infiltration in mouse ears were assessed by tissue staining and flow cytometric. The levels of inflammatory factors were detected by enzyme-linked immunosorbent assay (ELISA), and the total protein and phosphorylation levels of related pathways were analyzed by western blotting. RESULTS: In this study, 11 active ingredients, 122 Cortex Dictamni and dermatitis intersection targets were identified. The results from Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the core targets were mainly enriched in immune response and inflammatory signaling pathways. AD mice treated with ethanol extract of Cortex Dictamni (ECD) improved the symptoms of ear skin lesions, alleviated epidermis and dermis thickening of the AD mice ears, decreased pathological immune cell infiltration and attenuated the levels of inflammatory cytokines (TLR4, IL-6, IL-17), and inhibited the hyperactivation of the PI3K-AKT, JAK1-STAT3/STAT6 signal pathways. CONCLUSIONS: Cortex Dictamni can improve the symptoms of skin lesions and the degree of inflammation caused by AD, and may inhibit AD through multiple pathways, such as regulating PI3K-AKT and JAK1-STAT3/STAT6 pathways. These results not only provide experimental evidence for the clinical application of Cortex Dictamni but also provide some help for the research and development of dermatitis drugs.


Assuntos
Dermatite Atópica , Medicamentos de Ervas Chinesas , Dermatopatias , Animais , Camundongos , Dermatite Atópica/patologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Dermatopatias/tratamento farmacológico
3.
Toxicol Lett ; 357: 84-93, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35017030

RESUMO

The association of herb medicine Cortex Dictamni (CD) with severe even fatal hepatotoxicity has been widely reported. Recently, we demonstrated that the metabolic activation of at least ten furanoids in CD was responsible for the liver injury caused by the ethanol extract of CD (ECD) in mice. Protein adduction by reactive metabolites is considered to initiate the process of liver injury. Unlike single chemicals, the mode of and the details of protein modification by multiple components in an herb is unclear. This study aimed to characterize protein adductions derived from the reactive metabolite of furanoids in ECD-treated mice and define the association of protein adduction with liver injury. The hepatic cysteine- and lysine-based protein adducts derived from epoxide or cis-enedione of at least six furanoids were identified in mice. The furanoids with an earlier serum content Tmax were mainly to bind with hepatic glutathione and no protein adducts were formed except for dictamnine. The hepatic proteins were modified by the later absorbed furanoids. The levels of hepatic protein adduct were correlated with the degree of liver injury. In addition, the reactive metabolites of different furanoids can simultaneously bind to the model peptide by the identical reactive moiety, indicating the additive effects of the individual furanoids in the modification of hepatic proteins. In conclusion, hepatic protein adduction by multiple furanoids may play a role in ECD-induced liver injury. The earlier absorbed furanoids were mainly to bind with glutathione whereas the hepatic proteins were modified by the later furanoids.


Assuntos
Dictamnus/química , Furanos/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Plantas Medicinais/toxicidade , Proteínas/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas , Cisteína/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Etanol/química , Glutationa/metabolismo , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Extratos Vegetais/efeitos adversos , Plantas Medicinais/química
4.
Toxicol Lett ; 330: 41-52, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32437846

RESUMO

Many furan containing compounds have been reported to be toxic resulted from the metabolic activation of the furan ring to reactive metabolite (RM). Cortex Dictamni (CD), a widely used herbal medicine, has been reported to cause severe even fatal hepatotoxicity. The injurious components and mechanism of CD-induced liver injury remain unclear. Our preliminary study showed that dictamnine, one major furanoid in CD, caused mouse liver injury via its reactive epoxide metabolite. Besides dictamnine, the major components of CD are series of bioactivation-alerting furanoids. Thus, we hypothesize that series of furanoids in CD may undergo metabolic activation and play a key role in CD-induced liver injury. Here, a single oral dose of 60 g/kg ethanol extract of CD (ECD) caused severe hepatocellular necrosis in mice at 24 h post-dose. ECD-induced liver injury showed a dose- and time-dependent manner. The hepatotoxic effects could be completely abolished by P450 nonselective inhibitor 1-aminobenzotriazole (ABT) and strongly modulated by other P450 modulators. The furanoids-concentrated fraction of ECD was responsible for the hepatotoxicity. At least ten furanoids with high abundance in ECD, such as obakunone, dictamnine, fraxinellone, limonin, were found to be metabolized to reactive epoxide or cis-enedione. The RM levels were consistent with the liver injury degree. Multiple furanoids, rather than single one, cooperatively contributed to the hepatotoxicity. ECD-induced liver injury could be reproduced by a mixture of pure furanoids. In summary, this study provides toxic component profiles of CD and demonstrates that P450-mediated bioactivation of multiple furanoids is responsible for CD-induced liver injury.

5.
Front Chem ; 8: 73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185157

RESUMO

The root barks of perennial herb Dictamnus dasycarpus (Cortex Dictamni) were reported to be rich in anti-inflammation activity constituents, limonoids. Then, the investigation of anti-inflammation therapeutic limonoids from this plant was developed in the present study. Through the combination of various chromatographies isolation, six new limonoids, named dictamlimonol A (1), dictamlimonoside B (2), and dictamlimonols C-F (3-6), along with seven known ones (7-13), were obtained. Their structures were ascertained based on the extensive spectroscopic methods and ECD data analysis. Among them, compound 1 was the first 7,19-epoxy limonoid found in natural products. The anti-inflammatory effects of all limonoids were evaluated in lipopolysaccharide (LPS)-treated RAW 264.7 cell lines. Compounds 5, 7-11, and 13 were found to inhibit LPS-induced nitric oxide (NO) production. Moreover, dictamlimonol D (5), fraxinellone (11), and dasylactone A (13) were found to reduce the LPS-induced expressions of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and cyclooxygenase-2 (COX-2) at the protein levels in a dose-dependent manner. These findings support that the administration of Cortex Dictamni may be beneficial for inflammation.

6.
Fitoterapia ; 139: 104358, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31629047

RESUMO

Nine new isoprenoids, named as dictamtrinor-guaianols A (1), B (2), C (3), D (4), and E (5), dictamnorsesquiterpenol A (6), dictamnorsesquiterpenosides B (7) and C (8), as well as dictamtriterpenol A (9), along with eight known compounds (10-17) were obtained from 70% EtOH extract of Cortex Dictamni. Their structures were ascertained based on the extensive spectroscopic methods and ECD data analysis. Moreover, LC-MS analysis result suggested compounds 2 and 3 were natural products. Furthermore, lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage model were used to evaluate nitric oxide production inhibitory activities of them, and compounds 2, 3, 5, 6, 8-11, as well as 15-17 displayed significant activities at 40 µM.


Assuntos
Dictamnus/química , Óxido Nítrico/metabolismo , Terpenos/farmacologia , Animais , China , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Raízes de Plantas/química , Células RAW 264.7 , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Terpenos/isolamento & purificação
7.
Fitoterapia ; 134: 465-473, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30923009

RESUMO

Eight new compounds named as dictamalkosides A (1), B (2), C (3), dictamphenosides A (4), B (5), C (6), D (7) and E (8), as well as 23 known ones were obtained from the 70% EtOH extract of Cortex Dictamni. Their structures were ascertained based on the spectroscopic evidences. Among the known compounds, 14, 17-23, 25-28, and 31 were isolated from Dictamnus genus for the first time; 16 and 24 were firstly isolated from this plant. And the 13C NMR data of 14 was reported here for the first time. Moreover, compounds 1-8, 12, 18-21, 27 and 31 were found to exhibit potential inhibitory effect on LPS-induced NO production at 40 µM for RAW 264.7 macrophages, which suggested alkaloids and phenolic acids might be anti-inflammation therapeutic substance in Cortex Dictamni.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Dictamnus/química , Hidroxibenzoatos/farmacologia , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , China , Hidroxibenzoatos/isolamento & purificação , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , Óxido Nítrico/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Células RAW 264.7
8.
Toxicol Appl Pharmacol ; 364: 68-76, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30578885

RESUMO

Cortex Dictamni is extensively used as an herbal medicine worldwide, but is believed to induce hepatotoxicity and even causes mortality in many Asian and European countries. As the most abundant furoquinoline alkaloid ingredient of Cortex Dictamni, dictamnine (DIC) can be metabolically activated by CYP3A to an epoxide metabolite, which possesses the potential to induce hepatotoxicity by covalent binding with proteins. As yet, the hepatotoxicity of DIC and the role played by metabolic activation remain unknown. Here, we found that DIC caused acute liver injury in a time- and dose-dependent manner in mice. The hepatic and urinary DIC epoxide intermediates were observed in DIC-treated mice. Ketoconazole, a CYP3A inhibitor, significantly reduced the hepatotoxicity of DIC and inhibited the formation of reactive metabolites of DIC. Moreover, treatment with 2,3-dihydro-DIC, a DIC analog synthesized by selective reduction of the furan moiety, produced no hepatotoxicity in mice, and no reactive metabolite was formed, suggesting a structural necessity of furan moiety in DIC hepatotoxicity. A time course of gradual hepatic glutathione consumption was observed in DIC-treated mice, while depletion of hepatic glutathione by L-buthionine-S,R-sulfoximine enhanced the hepatotoxicity of DIC. Collectively, this study demonstrates that DIC induces acute hepatocellular injury in mice, and that metabolic activation of furan plays a crucial role in DIC-induced hepatotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Furanos/metabolismo , Fígado/efeitos dos fármacos , Preparações de Plantas/toxicidade , Quinolinas/toxicidade , Ativação Metabólica , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A/farmacologia , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Cetoconazol/farmacologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Fatores de Tempo , Toxicocinética
9.
Molecules ; 23(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274140

RESUMO

Cortex Dictamni is a commonly-used traditional Chinese herbal medicine for the treatment of skin inflammation, tinea, and eczema. Recently, some studies reported that Cortex Dictamni might induce liver injury, suggesting more attention to its safety. The current study was designed to investigate subchronic toxicity of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDEE) in mice and the potential hepatotoxicity mechanisms in vitro. Firstly, CDAE or CDEE groups were administrated with varying dosages (2.3, 4.6, or 9.2 g/kg/day, p.o.) in mice for 28 days in subchronic toxicity studies. General clinical signs and biochemical parameters were examined, and morphological analyses were conducted. Secondly, we identified the different constituents of CDAE and CDEE using HPLC-MS/MS and chose major components for further study. In order to determine the toxic components, we investigated the cytotoxicity of extracts and chosen components using CCK-8 assay in HepG2 cells. Furthermore, we explored the possible hepatotoxicity mechanisms of Cortex Dictamni using a high content analysis (HCA). The results showed that no significant differences of general clinical signs were observed in mice. Aspartate alanine aminotransferase (ALT) and aminotransferase (AST) were significantly increased in the high-dose CDAE and CDEE groups compared to the control group. Meanwhile, the absolute and relative liver weights and liver/brain ratio were significantly elevated, and histological examination of liver demonstrated cellular enlargement or nuclear shrinkage. In UPLC analysis, we compared the chemical constituents between CDAE and CDEE, and chose dictamnine, obakunone, and fraxinellone for hepatotoxicity evaluation in the in vitro studies. In the CCK-8 assay, CDAE, CDEE, dictamnine, obakunone, and fraxinellone decreased the cell viability in a dose-dependent manner after treatment for 48 h. Furthermore, the cell number decreased, while the nuclear intensity, cell membrane permeability, and concentration of reactive oxygen species were shown to increase, meanwhile, mitochondrial membrane potential was also changed in HepG2 cells following 48 h of compounds treatment using HCA. Our studies suggested that CDAE and CDEE have potential hepatotoxicity, and that the alcohol extraction process could increase toxicity. Dictamnine, obakunone, and fraxinellone may be the possible toxic components in Cortex Dictamni with dictamnine as the most potentially hepatotoxic component, whose potential hepatotoxicity mechanism may be associated with cell apoptosis. Moreover, this study could provide valuable data for clinical drug safety research of Cortex Dictamni and a good example for safety study of other Chinese herbal medicines.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Dictamnus/química , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Benzofuranos/química , Benzofuranos/toxicidade , Benzoxepinas/química , Benzoxepinas/toxicidade , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Etanol/química , Feminino , Células Hep G2 , Humanos , Limoninas/química , Limoninas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Quinolinas/química , Quinolinas/toxicidade , Testes de Toxicidade Subcrônica , Água/química
10.
Biomed Pharmacother ; 102: 1-8, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29547743

RESUMO

Airway smooth muscle (ASM) is a prominent effecter in maintaining bronchial muscle contraction and responsible for airway hyper-responsiveness (AHR); the phenotype change and over-proliferation of airway smooth muscle cells (ASMCs) play key roles in the pathogenesis of asthma. The aim of this study was to investigate the anti-proliferation effects of Cortex Dictamni aqueous extract (CDAE) and ethanol extract (CDE) on ASMCs and the possible underline mechanisms. Cell proliferation rates were determined by MTT assay; matrix metalloproteinases-2 (MMP-2) activity was examined by gelatin zymography; cell proliferation and migration were appraised by in-vitro cell-gap closure assessment; protein expressions of p38, Bcl-2 and FAK of ASMCs were evaluated by western blotting and Ca2+ influx of cells was measured by confocal laser microscope. Our data demonstrated that the proliferation, migration and MMP-2 expressions of ASMCs were inhibited by CDAE or CDE; the protein expressions of p38, Bcl-2 and FAK in ASMCs were substantially reduced by CDAE and CDE detected by western blotting or immunocytochemistry; also the increased calcium influx has been observed instantaneously after ASMCs were stimulated by CDAE or CDE. These findings suggested that Cortex Dictamni extracts might have inhibitory effects on ASMCs over-proliferation which could be one of the underline mechanisms for the therapy of asthma.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dictamnus/química , Miócitos de Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Asma/tratamento farmacológico , Asma/fisiopatologia , Western Blotting , Cálcio/metabolismo , Movimento Celular/efeitos dos fármacos , Feminino , Quinase 1 de Adesão Focal/metabolismo , Microscopia Confocal , Músculo Liso/citologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
World J Gastroenterol ; 23(16): 2912-2927, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28522909

RESUMO

AIM: To investigate the antioxidant and hepatoprotective effects of Cortex Dictamni aqueous extract (CDAE) in carbon tetrachloride (CCl4)-induced liver damage in rats. METHODS: The in vitro antioxidant effect of CDAE was investigated using α,α-diphenyl-ß-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), ß-carotene bleaching, reducing power, and thiobarbituric acid reactive substance assays. A linoleic acid system, including ferric thiocyanate (FTC) and thiobarbituric acid (TBA) assays, was used to evaluate the inhibition of lipid peroxidation. The in vivo hepatoprotective and antioxidant effects of CDAE against CCl4-induced liver damage were evaluated in Sprague-Dawley rats. Silymarin was used as a positive control. Liver damage was assessed by determining hepatic histopathology and liver marker enzymes in serum. Enzyme and non-enzyme antioxidant levels and lipid peroxide content were measured in the liver. Cytochrome P450 2E1 (CYP2E1) protein expression was measured via immunohistochemical staining. Nuclear factor E2-related factor (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase catalytic subunit (γ-GCSc) protein expression was measured by Western blot. RESULTS: Our results showed that CDAE exhibited a strong antioxidant activity in vitro. CDAE scavenged DPPH and ABTS radicals in a dose-dependent manner. CDAE inhibited lipid peroxidation with a lipid peroxide inhibition rate of 40.6% ± 5.2%. In the FTC and TBA assays, CDAE significantly inhibited lipid peroxidation (P < 0.01). In vivo histopathological studies indicated that CCl4-induced liver injury was alleviated following CDAE treatment in rats of both sexes. CDAE (160 and 320 mg/kg) significantly prevented CCl4-induced elevations of alkaline phosphatase, glutamate pyruvate transaminase, aspartate aminotransferase, and total bilirubin levels in rats of both sexes (P < 0.05, 0.01, or 0.001). Moreover, CDAE restored the decreased activities of hepatic antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, as well as non-enzyme antioxidant glutathione, which were induced by CCl4 treatment. CDAE significantly suppressed the up-regulation of CYP2E1 and promoted Nrf2, HO-1, NQO1, and γ-GCSc protein expression. CONCLUSION: CDAE exhibits good antioxidant performance in vitro, with marked radical-scavenging and anti-lipid peroxidation activities. CDAE is effective in preventing CCl4-induced hepatic damage in rats of both sexes. The hepatoprotective activity of CDAE may be attributable to its antioxidant activity, which may involve Keap1-Nrf2-mediated antioxidant regulation.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dictamnus/química , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Tetracloreto de Carbono , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/metabolismo , Citoproteção , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Ratos Sprague-Dawley , Silimarina/farmacologia , Fatores de Tempo
12.
Biomed Pharmacother ; 89: 233-244, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28231545

RESUMO

Ischemia-reperfusion injury is the major manifestation of ischemic heart disease, which facilitates cardiac arrhythmias, heart failure and death. Oxidative stress and apoptosis have been involved in the pathogenesis of myocardial ischemia-reperfusion injury. Modern pharmacological studies have indicated that the extracts and active compounds of Cortex Dictamni exhibit antioxidative and cardiovascular protective activities. This study was designed to investigate the protective effect of aqueous extract of Cortex Dictamni (CDAE) on regulating hypoxia/reoxygenation (H/R)-induced cardiomyocytes oxidative stress and apoptosis. H9c2 cardiomyocytes pretreatmented with CDAE for 24h were exposed to hypoxia/reoxygenation. Cell survival was measured by methyl thiazolyl tetrazolium (MTT) assay, and by the detections of lactate dehydrogenase (LDH) activity and cardiac troponin I (cTn-I) content in cultured supernatant. Cell apoptosis was measured by Hoechst 33342/propidium iodide (PI) staining, Annexin-V/PI staining, and terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay. Intracellular reactive oxygen species (ROS) production, superoxide dismutase (SOD) activity and malondialdehyde (MDA) level were measured to examine antioxidant activity. Mitochondrial membrane potential and release of cytochrome c were measured to examine mitochondrial changes. The expressions of anti-oxidant, pro-apoptosis and anti-apoptosis proteins were measured by performing western blotting assay. Inhibitor LY294002 was used to confirm the regulation effect of CDAE on PI3K/Akt signaling pathway. CDAE pretreatment prevents H/R-induced cardiomyocytes oxidative stress and apoptosis through activation of PI3K/Akt signaling pathway.


Assuntos
Apoptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
13.
J Ethnopharmacol ; 158 Pt A: 207-15, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25456429

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cortex Dictamni is used in Chinese folk medicine for the treatment of jaundice, cough, rheumatism and some skin diseases; however, its possible toxicity has not been rigorously studied. The present investigation was carried out to evaluate the safety of Cortex Dictamni aqueous extract (CDAE) by acute and sub-chronic toxicity studies. MATERIALS AND METHODS: In acute toxicity tests, seven groups of mice (n=5/group/sex) were orally treated with doses of 0, 28.7, 33.6, 39.7, 46.7, 54.9 and 64.6g/kg of CDAE and general behavior, adverse effects and mortality were recorded for up to 14 days. In sub-chronic toxicity assays, animals received CDAE by gavage at the doses of 0, 3.0, 6.0 or 12.0g/kg/day (n=10/group/sex) for 4 weeks and then followed for a 2-week recovery period. The biochemical, hematological and morphological parameters were determined. RESULTS: In adult mice, single oral administrations of CDAE (0-64.6g/kg body weight) induced an increase in the incidence of general behavioral adverse effects. The mortality rate also increased with increasing dosage (LD50=48.2g/kg). In rats, daily single oral doses of CDAE were well tolerated behaviorally after 4 weeks and induced no significant changes in body weights. However, the absolute and relative liver weight at the end of both administration and recovery periods were significantly elevated, although the histological examination of various organs revealed no differences between the control and the treated groups. The hematological and biochemical parameters were significantly changed; lymphocytes, alanine transaminase, alkaline phosphatase levels showed a significant decrease while neutrophilic granulocyte, albumin, total cholesterol, glucose and blood urea nitrogen levels showed a significant increase, suggesting disturbances of hematopoiesis and liver and kidney functions. CONCLUSIONS: Overall, the acute toxicity of CDAE was not clearly observed. However, it is possible that CDAE has a selective toxicity considering the changes in some hematological and liver function parameters and the liver-body weight ratios in the sub-chronic oral toxicity study.


Assuntos
Extratos Vegetais/toxicidade , Rutaceae/química , Administração Oral , Animais , Relação Dose-Resposta a Droga , Feminino , Dose Letal Mediana , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/administração & dosagem , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Aguda , Testes de Toxicidade Subcrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA