Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Front Neurosci ; 18: 1365307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751861

RESUMO

Objective/background: To assess whether cerebral structural alterations in isolated rapid eye movement sleep behavior disorder (iRBD) are progressive and differ from those of normal aging and whether they are related to clinical symptoms. Patients/methods: In a longitudinal study of 18 patients with iRBD (age, 66.1 ± 5.7 years; 13 males; follow-up, 1.6 ± 0.6 years) and 24 age-matched healthy controls (age, 67.0 ± 4.9 years; 12 males; follow-up, 2.0 ± 0.9 years), all participants underwent multiple extensive clinical examinations, neuropsychological tests, and magnetic resonance imaging at baseline and follow-up. Surface-based cortical reconstruction and automated subcortical structural segmentation were performed on T1-weighted images. We used mixed-effects models to examine the differences between the groups and the differences in anatomical changes over time. Results: None of the patients with iRBD demonstrated phenoconversion during the follow-up. Patients with iRBD had thinner cortices in the frontal, occipital, and temporal regions, and more caudate atrophy, compared to that in controls. In similar regions, group-by-age interaction analysis revealed that patients with iRBD demonstrated significantly slower decreases in cortical thickness and caudate volume with aging than that observed in controls. Patients with iRBD had lower scores on the Korean version of the Mini-Mental Status Examination (p = 0.037) and frontal and executive functions (p = 0.049) at baseline than those in controls; however, no significant group-by-age interaction was identified. Conclusion: Patients with iRBD show brain atrophy in the regions that are overlapped with the areas that have been documented to be affected in early stages of Parkinson's disease. Such atrophy in iRBD may not be progressive but may be slower than that in normal aging. Cognitive impairment in iRBD is not progressive.

2.
Biol Sex Differ ; 15(1): 39, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715106

RESUMO

BACKGROUND: Early life adversity impairs hippocampal development and function across diverse species. While initial evidence indicated potential variations between males and females, further research is required to validate these observations and better understand the underlying mechanisms contributing to these sex differences. Furthermore, most of the preclinical work in rodents was performed in adult males, with only few studies examining sex differences during adolescence when such differences appear more pronounced. To address these concerns, we investigated the impact of limited bedding (LB), a mouse model of early adversity, on hippocampal development in prepubescent and adolescent male and female mice. METHODS: RNA sequencing, confocal microscopy, and electron microscopy were used to evaluate the impact of LB and sex on hippocampal development in prepubescent postnatal day 17 (P17) mice. Additional studies were conducted on adolescent mice aged P29-36, which included contextual fear conditioning, retrograde tracing, and ex vivo diffusion magnetic resonance imaging (dMRI). RESULTS: More severe deficits in axonal innervation and myelination were found in the perforant pathway of prepubescent and adolescent LB males compared to LB female littermates. These sex differences were due to a failure of reelin-positive neurons located in the lateral entorhinal cortex (LEC) to innervate the dorsal hippocampus via the perforant pathway in males, but not LB females, and were strongly correlated with deficits in contextual fear conditioning. CONCLUSIONS: LB impairs the capacity of reelin-positive cells located in the LEC to project and innervate the dorsal hippocampus in LB males but not female LB littermates. Given the critical role that these projections play in supporting normal hippocampal function, a failure to establish proper connectivity between the LEC and the dorsal hippocampus provides a compelling and novel mechanism to explain the more severe deficits in myelination and contextual freezing found in adolescent LB males.


Childhood adversity, such as severe deprivation and neglect, leads to structural changes in human brain development that are associated with learning deficits and behavioral difficulties. Some of the most consistent findings in individuals exposed to childhood adversity are reduced hippocampal volume and abnormal hippocampal function. This is important because the hippocampus is necessary for learning and memory, and it plays a crucial role in depression and anxiety. Although initial studies suggested more pronounced hippocampal deficits in men, additional research is needed to confirm these findings and to elucidate the mechanisms responsible for these sex differences. We found that male and female mice exposed to early impoverishment and deprivation exhibit similar structural changes to those observed in deprived children. Interestingly, adolescent male mice, but not females, display severe deficits in their ability to freeze when placed back in a box where they were previously shocked. The ability to associate "shock/danger" with a "box/place" is referred to as contextual fear conditioning and requires normal connections between the entorhinal cortex and the hippocampus. We found that these connections did not form properly in male mice exposed to impoverished conditions, but they were only minimally affected in females. These findings appear to explain why exposure to impoverished conditions impairs contextual fear conditioning in male mice but not in female mice. Additional work is needed to determine whether similar sex-specific changes in these connections are also observed in adolescents exposed to neglect and deprivation.


Assuntos
Hipocampo , Memória , Camundongos Endogâmicos C57BL , Via Perfurante , Proteína Reelina , Caracteres Sexuais , Animais , Masculino , Feminino , Hipocampo/metabolismo , Medo , Camundongos , Estresse Psicológico
3.
Biol Psychiatry ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38521159

RESUMO

BACKGROUND: Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS: We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS: We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS: Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.

4.
J Neurosci Res ; 102(1): e25287, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284862

RESUMO

It has been suggested that substance use disorders could lead to accelerated biological aging, but only a few neuroimaging studies have investigated this hypothesis so far. In this cross-sectional study, structural neuroimaging was performed to measure cortical thickness (CT) in tricenarian adults with cocaine use disorder (CUD, n1 = 30) and their age-paired controls (YC, n1 = 30), and compare it with octogenarian elder controls (EC, n1 = 20). We found that CT in the right fusiform gyrus was similar between CUD and EC, thinner than the expected values of YC. We also found that regarding CT of the right inferior temporal gyrus, right inferior parietal cortex, and left superior parietal cortex, the CUD group exhibited parameters that fell in between EC and YC groups. Finally, CT of the right pars triangularis bordering with orbitofrontal gyrus, right superior temporal gyrus, and right precentral gyrus were reduced in CUD when contrasted with YC, but those areas were unrelated to CT of EC. Despite the 50-year age gap between our age groups, CT of tricenarian cocaine users assembles features of an octogenarian brain, reinforcing the accelerated aging hypothesis in CUD.


Assuntos
Cocaína , Octogenários , Adulto , Idoso de 80 Anos ou mais , Humanos , Idoso , Estudos Transversais , Encéfalo/diagnóstico por imagem , Cabeça
5.
Psychol Med ; 54(3): 611-619, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37642172

RESUMO

BACKGROUND: Clinical implementation of risk calculator models in the clinical high-risk for psychosis (CHR-P) population has been hindered by heterogeneous risk distributions across study cohorts which could be attributed to pre-ascertainment illness progression. To examine this, we tested whether the duration of attenuated psychotic symptom (APS) worsening prior to baseline moderated performance of the North American prodrome longitudinal study 2 (NAPLS2) risk calculator. We also examined whether rates of cortical thinning, another marker of illness progression, bolstered clinical prediction models. METHODS: Participants from both the NAPLS2 and NAPLS3 samples were classified as either 'long' or 'short' symptom duration based on time since APS increase prior to baseline. The NAPLS2 risk calculator model was applied to each of these groups. In a subset of NAPLS3 participants who completed follow-up magnetic resonance imaging scans, change in cortical thickness was combined with the individual risk score to predict conversion to psychosis. RESULTS: The risk calculator models achieved similar performance across the combined NAPLS2/NAPLS3 sample [area under the curve (AUC) = 0.69], the long duration group (AUC = 0.71), and the short duration group (AUC = 0.71). The shorter duration group was younger and had higher baseline APS than the longer duration group. The addition of cortical thinning improved the prediction of conversion significantly for the short duration group (AUC = 0.84), with a moderate improvement in prediction for the longer duration group (AUC = 0.78). CONCLUSIONS: These results suggest that early illness progression differs among CHR-P patients, is detectable with both clinical and neuroimaging measures, and could play an essential role in the prediction of clinical outcomes.


Assuntos
Afinamento Cortical Cerebral , Transtornos Psicóticos , Humanos , Adolescente , Estudos Longitudinais , Sintomas Prodrômicos , Transtornos Psicóticos/diagnóstico , Fatores de Risco
6.
Neuroimage Clin ; 40: 103523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38016407

RESUMO

Parkinson's disease pathology is hypothesized to spread through the brain via axonal connections between regions and is further modulated by local vulnerabilities within those regions. The resulting changes to brain morphology have previously been demonstrated in both prodromal and de novo Parkinson's disease patients. However, it remains unclear whether the pattern of atrophy progression in Parkinson's disease over time is similarly explained by network-based spreading and local vulnerability. We address this gap by mapping the trajectory of cortical atrophy rates in a large, multi-centre cohort of Parkinson's disease patients and relate this atrophy progression pattern to network architecture and gene expression profiles. Across 4-year follow-up visits, increased atrophy rates were observed in posterior, temporal, and superior frontal cortices. We demonstrated that this progression pattern was shaped by network connectivity. Regional atrophy rates were strongly related to atrophy rates across structurally and functionally connected regions. We also found that atrophy progression was associated with specific gene expression profiles. The genes whose spatial distribution in the brain was most related to atrophy rate were those enriched for mitochondrial and metabolic function. Taken together, our findings demonstrate that both global and local brain features influence vulnerability to neurodegeneration in Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/complicações , Transcriptoma , Encéfalo , Perfilação da Expressão Gênica , Atrofia/patologia , Imageamento por Ressonância Magnética/métodos , Progressão da Doença
7.
J Alzheimers Dis ; 96(1): 329-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37742646

RESUMO

BACKGROUND: A carbohydrate-restricted diet aimed at lowering insulin levels has the potential to slow Alzheimer's disease (AD). Restricting carbohydrate consumption reduces insulin resistance, which could improve glucose uptake and neural health. A hallmark feature of AD is widespread cortical thinning; however, no study has demonstrated that lower net carbohydrate (nCHO) intake is linked to attenuated cortical atrophy in patients with AD and confirmed amyloidosis. OBJECTIVE: We tested the hypothesis that individuals with AD and confirmed amyloid burden eating a carbohydrate-restricted diet have thicker cortex than those eating a moderate-to-high carbohydrate diet. METHODS: A total of 31 patients (mean age 71.4±7.0 years) with AD and confirmed amyloid burden were divided into two groups based on a 130 g/day nCHO cutoff. Cortical thickness was estimated from T1-weighted MRI using FreeSurfer. Cortical surface analyses were corrected for multiple comparisons using cluster-wise probability. We assessed group differences using a two-tailed two-independent sample t-test. Linear regression analyses using nCHO as a continuous variable, accounting for confounders, were also conducted. RESULTS: The lower nCHO group had significantly thicker cortex within somatomotor and visual networks. Linear regression analysis revealed that lower nCHO intake levels had a significant association with cortical thickness within the frontoparietal, cingulo-opercular, and visual networks. CONCLUSIONS: Restricting carbohydrates may be associated with reduced atrophy in patients with AD. Lowering nCHO to under 130 g/day would allow patients to follow the well-validated MIND diet while benefiting from lower insulin levels.


Assuntos
Doença de Alzheimer , Insulinas , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Amiloide , Proteínas Amiloidogênicas , Dieta com Restrição de Carboidratos , Carboidratos , Atrofia/complicações
8.
J Neurol ; 270(11): 5223-5234, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634161

RESUMO

BACKGROUND: The structural changes associated with cognitive performance in older people with multiple sclerosis (PwMS; age ≥ 50 years old) remain unknown. OBJECTIVE: To determine the relationship between whole-brain (WBV), thalamus as the largest deep gray matter nuclei, and cortex-specific volume measurements with both cognitive impairment and numerical performance in older PwMS. The main hypothesis is that cognitive impairment (CI) in older PwMS is explained by cortical thinning in addition to global and thalamic neurodegenerative changes. METHODS: A total of 101 older PwMS underwent cognitive and neuroimaging assessment. Cognitive assessment included tests established as sensitive in MS samples (Minimal Assessment of Cognitive Function in MS; MACFIMS), as well as those tests often utilized in Alzheimer's dementia studies (Wechsler's Memory Scale, Boston Naming Test, Visual Motor Integration and language). Cognitive impairment (CI) was based on -1.5 standard deviations in at least 2 cognitive domains (executive function, learning and memory, spatial processing, processing speed and working memory and language) when compared to healthy controls. WBV and thalamic volume were calculated using SIENAX/FIRST and cortical thickness using FreeSurfer. Differences in cortical thickness between CI and cognitively preserved (CP) were determined using age, sex, education, depression and WBV-adjusted analysis of covariance (ANCOVA). The relationship between domain-specific cognitive performance and cortical thickness was analyzed by linear regression models adjusted for age, sex, education, depression, WBV and thalamic volume. Benjamini-Hochberg-adjusted p-values lower than 0.05 were considered significant. RESULTS: The average age of the study population was 62.6 (5.9) years old. After adjustment, CI PwMS had significantly thinner left fusiform (p = 0.0003), left inferior (p = 0.0032), left transverse (p = 0.0013), and bilateral superior temporal gyri (p = 0.002 and p = 0.0011) when compared to CP PwMS. After adjusting for age, sex, education, depression WBV, and thalamic volume, CI status was additionally predicted by the thickness of the left fusiform (p = 0.001) and left cuneus gyri (p = 0.004). After the adjustment, SDMT scores were additionally associated with left fusiform gyrus (p < 0.001) whereas letter-based verbal fluency performance with left pars opercularis gyrus (p < 0.001). CONCLUSION: In addition to global and thalamic neurodegenerative changes, the presence of CI in older PwMS is additionally explained by the thickness of multiple cortical regions.

9.
Brain Commun ; 5(4): fcad192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483530

RESUMO

How beta-amyloid accumulation influences brain atrophy in Alzheimer's disease remains contentious with conflicting findings. We aimed to elucidate the correlations of regional longitudinal atrophy with cross-sectional regional and global amyloid in individuals with mild cognitive impairment and no cognitive impairment. We hypothesized that greater cortical thinning over time correlated with greater amyloid deposition, particularly within Alzheimer's disease characteristic regions in mild cognitive impairment, and weaker or no correlations in those with no cognitive impairment. 45 patients with mild cognitive impairment and 12 controls underwent a cross-sectional [11C]-Pittsburgh Compound B PET and two retrospective longitudinal structural imaging (follow-up: 23.65 ± 2.04 months) to assess global/regional amyloid and regional cortical thickness, respectively. Separate linear mixed models were constructed to evaluate relationships of either global or regional amyloid with regional cortical thinning longitudinally. In patients with mild cognitive impairment, regional amyloid in the right banks of the superior temporal sulcus was associated with longitudinal cortical thinning in the right medial orbitofrontal cortex (P = 0.04 after False Discovery Rate correction). In the mild cognitive impairment group, greater right banks amyloid burden and less cortical thickness in the right medial orbitofrontal cortex showed greater visual and verbal memory decline over time, which was not observed in controls. Global amyloid was not associated with longitudinal cortical thinning in any locations in either group. Our findings indicate an increasing influence of amyloid on neurodegeneration and memory along the preclinical to prodromal spectrum. Future multimodal studies that include additional biomarkers will be well-suited to delineate the interplay between various pathological processes and amyloid and memory decline, as well as clarify their additive or independent effects along the disease deterioration.

10.
Hum Brain Mapp ; 44(10): 4040-4051, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146003

RESUMO

The cognitive and behavioral development of children and adolescents is closely related to the maturation of brain morphology. Although the trajectory of brain development has been depicted in detail, the underlying biological mechanism of normal cortical morphological development in childhood and adolescence remains unclear. By combining the Allen Human Brain Atlas dataset with two single-site magnetic resonance imaging data including 427 and 733 subjects from China and the United States, respectively, we performed partial least squares regression and enrichment analysis to explore the relationship between the gene transcriptional expression and the development of cortical thickness in childhood and adolescence. We found that the spatial model of normal cortical thinning during childhood and adolescence is associated with genes expressed predominantly in astrocytes, microglia, excitatory and inhibitory neurons. Top cortical development-related genes are enriched for energy-related and DNA-related terms and are associated with psychological and cognitive disorders. Interestingly, there is a great deal of similarity between the findings derived from the two single-site datasets. This fills the gap between early cortical development and transcriptomes, which promotes an integrative understanding of the potential biological neural mechanisms.


Assuntos
Córtex Cerebral , Afinamento Cortical Cerebral , Criança , Humanos , Adolescente , Córtex Cerebral/patologia , Afinamento Cortical Cerebral/patologia , Encéfalo , Neurônios , Imageamento por Ressonância Magnética/métodos
11.
medRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066346

RESUMO

Parkinson's disease (PD) affects cortical structures and neurophysiology. How these deviations from normative variants relate to the neurochemical systems of the cortex in a manner corresponding to motor and cognitive symptoms is unknown. We measured cortical thickness and spectral neurophysiological alterations from structural magnetic resonance imaging and task-free magnetoencephalography in patients with idiopathic PD (NMEG = 79; NMRI = 65), contrasted with similar data from matched healthy controls (NMEG = 65; NMRI = 37). Using linear mixed-effects models and cortical atlases of 19 neurochemical systems, we found that the structural and neurophysiological alterations of PD align with several receptor and transporter systems (acetylcholine, serotonin, glutamate, and noradrenaline) albeit with different implications for motor and non-motor symptoms. Some neurophysiological alignments are protective of cognitive functions: the alignment of broadband power increases with acetylcholinergic systems is related to better attention function. However, neurochemical alignment with structural and other neurophysiological alterations is associated with motor and psychiatric impairments, respectively. Collectively, the present data advance understanding of the association between the nature of neurophysiological and structural cortical alterations in PD and the symptoms that are characteristic of the disease. They also demonstrate the value of a new nested atlas modeling approach to advance research on neurological and neuropsychiatric diseases.

12.
Epilepsia Open ; 8(2): 559-570, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36944585

RESUMO

OBJECTIVE: Epilepsy surgery is an effective treatment for drug-resistant patients. However, how different surgical approaches affect long-term brain structure remains poorly characterized. Here, we present a semiautomated method for quantifying structural changes after epilepsy surgery and compare the remote structural effects of two approaches, anterior temporal lobectomy (ATL), and selective amygdalohippocampectomy (SAH). METHODS: We studied 36 temporal lobe epilepsy patients who underwent resective surgery (ATL = 22, SAH = 14). All patients received same-scanner MR imaging preoperatively and postoperatively (mean 2 years). To analyze postoperative structural changes, we segmented the resection zone and modified the Advanced Normalization Tools (ANTs) longitudinal cortical pipeline to account for resections. We compared global and regional annualized cortical thinning between surgical treatments. RESULTS: Across procedures, there was significant cortical thinning in the ipsilateral insula, fusiform, pericalcarine, and several temporal lobe regions outside the resection zone as well as the contralateral hippocampus. Additionally, increased postoperative cortical thickness was seen in the supramarginal gyrus. Patients treated with ATL exhibited greater annualized cortical thinning compared with SAH cases (ATL: -0.08 ± 0.11 mm per year, SAH: -0.01 ± 0.02 mm per year, t = 2.99, P = 0.006). There were focal postoperative differences between the two treatment groups in the ipsilateral insula (P = 0.039, corrected). Annualized cortical thinning rates correlated with preoperative cortical thickness (r = 0.60, P < 0.001) and had weaker associations with age at surgery (r = -0.33, P = 0.051) and disease duration (r = -0.42, P = 0.058). SIGNIFICANCE: Our evidence suggests that selective procedures are associated with less cortical thinning and that earlier surgical intervention may reduce long-term impacts on brain structure.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Epilepsia do Lobo Temporal/cirurgia , Afinamento Cortical Cerebral , Lobectomia Temporal Anterior/métodos , Lobo Temporal/cirurgia
13.
Medicina (Kaunas) ; 59(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36984505

RESUMO

Helicobacter pylori infection consists a high global burden affecting more than 50% of the world's population. It is implicated, beyond substantiated local gastric pathologies, i.e., peptic ulcers and gastric cancer, in the pathophysiology of several neurodegenerative disorders, mainly by inducing hyperhomocysteinemia-related brain cortical thinning (BCT). BCT has been advocated as a possible biomarker associated with neurodegenerative central nervous system disorders such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and/or glaucoma, termed as "ocular Alzheimer's disease". According to the infection hypothesis in relation to neurodegeneration, Helicobacter pylori as non-commensal gut microbiome has been advocated as trigger and/or mediator of neurodegenerative diseases, such as the development of Alzheimer's disease. Among others, Helicobacter pylori-related inflammatory mediators, defensins, autophagy, vitamin D, dietary factors, role of probiotics, and some pathogenetic considerations including relevant involved genes are discussed within this opinion article. In conclusion, by controlling the impact of Helicobacter pylori-related hyperhomocysteinemia on neurodegenerative disorders might offer benefits, and additional research is warranted to clarify this crucial topic currently representing a major worldwide burden.


Assuntos
Doença de Alzheimer , Infecções por Helicobacter , Helicobacter pylori , Hiper-Homocisteinemia , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/complicações , Infecções por Helicobacter/complicações , Hiper-Homocisteinemia/complicações , Doenças Neurodegenerativas/complicações
14.
Eur J Radiol ; 160: 110711, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36731402

RESUMO

PURPOSE: Although cortical volume abnormalities are frequently detected in patients with carbon monoxide poisoning (COP), particularly delayed neurological sequelae (DNS), the associated changes in cortical thickness and shape patterns remain unknown. MATERIALS & METHODS: Using surface-based morphometry, we investigated the differences in cortical thickness and shape indices between a COP group (n = 44) vs healthy controls (HCs, n = 36), and between the DNS (n = 21) vs non-DNS (n = 23) subgroups. Additionally, the influence of cortical damage on neurological disorders was explored. RESULTS: The COP group exhibited significant cortical thinning mainly in the bilateral fronto-parietal lobes (P < 0.05, family-wise error corrected). When cortical thinning in the bilateral parietal lobes, bilateral primary motor areas, left primary sensory areas, and bilateral paracentral lobules was explored in the DNS subgroups compared to the non-DNS subgroup (P < 0.05, FWE corrected), no differences in shape indices between the two subgroups were noted. In the COP group, there were significant positive correlations between the Mini-Mental State Examination (MMSE) score and cortical thickness in the right superior frontal gyrus (SFG) and bilateral rostral middle frontal gyrus (rMFG) (P < 0.05, false discovery rate corrected). There was no any significant correlation between cortical thickness and Neuropsychiatric inventory (NPI), UPDRS III scores (P > 0.05, FDR-corrected). CONCLUSION: Cortical thickness is a more sensitive index than shape for measuring cortical damage in patients with COP exposure, as cortical thinning in the right SFG and bilateral rMFG is related to cognitive impairment.


Assuntos
Intoxicação por Monóxido de Carbono , Humanos , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/diagnóstico por imagem , Afinamento Cortical Cerebral , Encéfalo/diagnóstico por imagem , Lobo Frontal , Testes Neuropsicológicos , Imageamento por Ressonância Magnética
15.
Mol Neurobiol ; 60(3): 1440-1452, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36462136

RESUMO

Impairments of N-methyl-D-aspartate receptor (NMDAR) activity have been implicated in several neuropsychiatric disorders, with pharmacological inhibition of NMDAR-mediated currents and associated neurobehavioral changes considered as a model of schizophrenia. We analyzed the effects of brief and long-term exposure of rat cortical cultures to the most prevalent endogenous modulators of NMDAR (kynurenic acid, pregnenolone sulfate, spermidine, and zinc) on neuronal viability, stimulation-induced release of glutamate, and dendritic morphology with synaptic density. Both, glutamate release and neuronal viability studies revealed no difference between the test and control groups. No differences were also observed in the number of dendritic branching and length, or density of synaptic connections and neuronal soma size. Comparison of the extent of dendritic projections and branching patterns, however, revealed enhanced distal arborization with the expansion of the dendritic area under prolonged treatment of cultures with physiological concentrations of NMDAR modulators, with differences reaching significance in spermidine and pregnenolone sulfate tests. Measurements of the density of glutamatergic synapses showed consistency across all neuronal groups, except those treated with pregnenolone sulfate, which showed a reduction of PSD-95-positive elements. Overall, our data suggest that constitutive glutamatergic activity mediated by NMDAR controls the dendritic field expansion and can influence the integrative properties of cortical neurons.


Assuntos
Receptores de N-Metil-D-Aspartato , Espermidina , Ratos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Glutamatos
16.
J Alzheimers Dis ; 89(2): 641-658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35938245

RESUMO

BACKGROUND: An understudied variant of Alzheimer's disease (AD), the behavioral/dysexecutive variant of AD (bvAD), is associated with progressive personality, behavior, and/or executive dysfunction and frontal atrophy. OBJECTIVE: This study characterizes the neuropsychological and neuroanatomical features associated with bvAD by comparing it to behavioral variant frontotemporal dementia (bvFTD), amnestic AD (aAD), and subjects with normal cognition. METHODS: Subjects included 16 bvAD, 67 bvFTD, 18 aAD patients, and 26 healthy controls. Neuropsychological assessment and MRI data were compared between these groups. RESULTS: Compared to bvFTD, bvAD showed more significant visuospatial impairments (Rey Figure copy and recall), more irritability (Neuropsychological Inventory), and equivalent verbal memory (Philadelphia Verbal Learning Test). Compared to aAD, bvAD indicated more executive dysfunction (F-letter fluency) and better visuospatial performance. Neuroimaging analysis found that bvAD showed cortical thinning relative to bvFTD posteriorly in left temporal-occipital regions; bvFTD had cortical thinning relative to bvAD in left inferior frontal cortex. bvAD had cortical thinning relative to aAD in prefrontal and anterior temporal regions. All patient groups had lower volumes than controls in both anterior and posterior hippocampus. However, bvAD patients had higher average volume than aAD patients in posterior hippocampus and higher volume than bvFTD patients in anterior hippocampus after adjustment for age and intracranial volume. CONCLUSION: Findings demonstrated that underlying pathology mediates disease presentation in bvAD and bvFTD.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Alzheimer/patologia , Afinamento Cortical Cerebral , Cognição , Demência Frontotemporal/complicações , Humanos , Imageamento por Ressonância Magnética , Testes Neuropsicológicos
17.
J Behav Addict ; 11(2): 417-426, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35895476

RESUMO

Background and Aims: Screen media activity (SMA) may impact neurodevelopment in youth. Cross-sectionally, SMA has been linked to brain structural patterns including cortical thinning in children. However, it remains unclear whether specific brain structural co-variation patterns are related to SMA and other clinically relevant measures such as psychopathology, cognition and sleep in children. Methods: Adolescent Brain Cognitive Development (ABCD) participants with useable baseline structural imaging (N = 10,691; 5,107 girls) were analyzed. We first used the Joint and Individual Variation Explained (JIVE) approach to identify cortical and subcortical covariation pattern(s) among a set of 221 brain features (i.e., surface area, thickness, or cortical and subcortical gray matter (GM) volumes). Then, the identified structural covariation pattern was used as a predictor in linear mixed-effect models to investigate its associations with SMA, psychopathology, and cognitive and sleep measures. Results: A thalamus-prefrontal cortex (PFC)-brainstem structural co-variation pattern (circuit) was identified. The pattern suggests brainstem and bilateral thalamus proper GM volumes covary more strongly with GM volume and/or surface area in bilateral superior frontal gyral, rostral middle frontal, inferior parietal, and inferior temporal regions. This covariation pattern highly resembled one previously linked to alcohol use initiation prior to adulthood and was consistent in girls and boys. Subsequent regression analyses showed that this co-variation pattern associated with SMA (ß = 0.107, P = 0.002) and externalizing psychopathology (ß = 0.117, P = 0.002), respectively. Discussion and Conclusions: Findings linking SMA-related structural covariation to externalizing psychopathology in youth resonate with prior studies of alcohol-use initiation and suggest a potential neurodevelopmental mechanism underlying addiction vulnerability.


Assuntos
Encéfalo , Substância Cinzenta , Adolescente , Desenvolvimento do Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Criança , Cognição , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Córtex Pré-Frontal
18.
Neurobiol Aging ; 115: 12-19, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35453034

RESUMO

White matter hyperintensities (WMH) and ß-amyloid (Aß) accumulation have both been linked to neurodegeneration in Alzheimer's disease (AD). However, the independent effects of global WMH and regional Aß on the corresponding regional cortical thickness have not been investigated. Here, we evaluated 280 cognitively normal (CN), 450 mild cognitive impairment (MCI), and 63 individuals with AD dementia separately. In CN individuals, only WMH was associated with lower cortical thickness in fronto-temporal regions, independent of regional Aß deposition in the corresponding cortical regions. In MCI individuals, the spatial pattern of independent WMH associations was predominantly in temporal and cingulate regions, while independent regional Aß associations were now evident in temporal regions. No regional interactions were found. In non-demented individuals and MCI individuals alone, we found that global WMH, composite regional Aß burden and cortical thickness in AD-associated regions all independently predicted progression to AD dementia. Our findings suggest that the independent effects of global WMH and regional Aß on regional cortical thickness are spatially different, converging in temporal regions in MCI individuals.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
19.
Neuroimage Clin ; 34: 103012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35487133

RESUMO

OBJECTIVE: Recent studies suggested that CSF-mediated factors contribute to periventricular (PV) T2-hyperintense lesion formation in multiple sclerosis (MS) and this in turn correlates with cortical damage. We thus investigated if such PV-changes are observable microstructurally in early-MS and if they correlate with cortical damage. METHODS: We assessed the magnetisation transfer ratio (MTR) in PV normal-appearing white matter (NAWM) and in MS lesions in 44 patients with a clinically isolated syndrome (CIS) suggestive of MS and 73 relapsing-remitting MS (RRMS) patients. Band-wise MTR values were related to cortical mean thickness (CMT) and compared with 49 healthy controls (HCs). For each band, MTR changes were assessed relative to the average MTR values of all HCs. RESULTS: Relative to HCs, PV-MTR was significantly reduced up to 2.63% in CIS and 5.37% in RRMS (p < 0.0001). The MTR decreased towards the lateral ventricles with 0.18%/mm in CIS and 0.31%/mm in RRMS patients, relative to HCs. In RRMS, MTR-values adjacent to the ventricle and in PV-lesions correlated positively with CMT and negatively with EDSS. CONCLUSION: PV-MTR gradients are present from the earliest stage of MS, consistent with more pronounced microstructural WM-damage closer to the ventricles. The positive association between reduced CMT and lower MTR in PV-NAWM suggests a common pathophysiologic mechanism. Together, these findings indicate the potential use of multimodal MRI as refined marker for MS-related tissue changes.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Encéfalo , Ventrículos Cerebrais/patologia , Doenças Desmielinizantes/patologia , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Substância Branca/patologia
20.
Neuropathol Appl Neurobiol ; 48(1): e12758, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388852

RESUMO

AIMS: The causes of distinct patterns of reduced cortical thickness in the common human epilepsies, detectable on neuroimaging and with important clinical consequences, are unknown. We investigated the underlying mechanisms of cortical thinning using a systems-level analysis. METHODS: Imaging-based cortical structural maps from a large-scale epilepsy neuroimaging study were overlaid with highly spatially resolved human brain gene expression data from the Allen Human Brain Atlas. Cell-type deconvolution, differential expression analysis and cell-type enrichment analyses were used to identify differences in cell-type distribution. These differences were followed up in post-mortem brain tissue from humans with epilepsy using Iba1 immunolabelling. Furthermore, to investigate a causal effect in cortical thinning, cell-type-specific depletion was used in a murine model of acquired epilepsy. RESULTS: We identified elevated fractions of microglia and endothelial cells in regions of reduced cortical thickness. Differentially expressed genes showed enrichment for microglial markers and, in particular, activated microglial states. Analysis of post-mortem brain tissue from humans with epilepsy confirmed excess activated microglia. In the murine model, transient depletion of activated microglia during the early phase of the disease development prevented cortical thinning and neuronal cell loss in the temporal cortex. Although the development of chronic seizures was unaffected, the epileptic mice with early depletion of activated microglia did not develop deficits in a non-spatial memory test seen in epileptic mice not depleted of microglia. CONCLUSIONS: These convergent data strongly implicate activated microglia in cortical thinning, representing a new dimension for concern and disease modification in the epilepsies, potentially distinct from seizure control.


Assuntos
Epilepsia , Microglia , Animais , Encéfalo , Células Endoteliais , Epilepsia/metabolismo , Camundongos , Microglia/metabolismo , Convulsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA