Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.043
Filtrar
1.
J Proteomics ; 305: 105258, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004338

RESUMO

The cotton leaf hopper is a major pest in cotton, causing a hopper burn in leaves. In this study, a comparative proteomic analysis of NDLH2010 (Resistant) and LRA5166 (Susceptible), infected with leaf hopper, was employed using a nano LC-MS/MS approach. A total of 1402 proteins varied significantly between leaf hopper-infected and control plants. The resistant and susceptible genotypes had differentially expressed proteins (DEPs) of 743 and 659, respectively. Functional annotation of DEPs revealed that the DEPs were primarily associated with stress response, hormone synthesis, photosynthesis, cell wall, and secondary metabolites. Notably, DEPs such as polyphenol oxidase, carboxypeptidase, heat shock proteins, protein BTR1-like isoform X2, chaperone protein ClpB1, and ß glucosidase factors associated with environmental stress response were also detected. Quantitative real-time PCR (qRT-PCR) analysis confirmed a positive correlation between protein abundances and transcripts for all genes. Collectively, this study provides the molecular mechanisms associated with cotton defense responses against leaf hopper. SIGNIFICANCE STATEMENT: Cotton, a natural fiber, assumes a pivotal role as a raw material for textile industries, thereby bearing significant importance in the global economy. The cotton production sector is considerably affected by both biotic and abiotic stresses. The cotton leaf hopper (Amrasca biguttula biguttula (Ishida)) stands as a polyphagous insect, emerging as a dominant sap-feeding pest of the cotton crop. The continuous onslaught of sap-feeding insects on cotton plants has a detrimental impact, with leaf hoppers potentially causing yield reductions of up to 50%. Therefore, comprehending the molecular interplay between cotton and leaf hopper, elucidated at the proteome level, holds promise for more effective pest management strategies. This approach holds the potential to offer insights that contribute to the development of leaf hopper-resistant cotton varieties.

2.
Int J Biol Macromol ; : 133885, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39019359

RESUMO

Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.

3.
Int J Biol Macromol ; : 133879, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39019372

RESUMO

This work aims to investigate the effects of deep eutectic solvents (DES) on the chemical and physical structure of cellulose. Choline chloride-oxalic acid and choline chloride-oxalic acid-glycerol were selected as solvents and cotton fibers was sued as raw materials to explore the difference between cotton fibers treated separately with two different DES. According to yield analysis, ternary solvents alleviated the degradation of cellulose when comparing to binary solvents, resulting in over 90 % of cellulose being obtained. Particularly, there is an esterification reaction of cellulose during treatment with the DES system, which also affects the performance of the subsequent products. Through the simple use of mechanical foaming with polyvinyl alcohol and the palm wax impregnation process, foams with a water contact angle greater than 140° and excellent mechanical properties can be obtained. The resultant foam material has 5 % linear elastic area, and prominent compressive strength providing potential use in the packaging industry in the replacement of plastic.

4.
Int J Biol Macromol ; 276(Pt 1): 133826, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39002908

RESUMO

Cotton gauze is commonly used in initial emergency care. However, its high hydrophilicity and limited clotting capacity can lead to the excessive absorption of blood, resulting in unnecessary blood loss. Herein, an amphiphilic Janus cotton gauze with excellent moisture management and enhanced blood coagulation has been developed via in situ generating bioactive glass (BG) onto the cotton gauze (CG), and then attaching cardanol (CA) onto one side of the BG-loaded CG (CG@BG) via click reaction. The Janus gauze (CA-CG@BG) has asymmetric wetting properties with a hydrophilic side (CA-CG@BGHL) and a hydrophobic side (HBCA-CG@BG). When applied to hemostatic, the porous and active BG on CA-CG@BGHL can rapidly initiate coagulation cascade to form a robust thrombus. CA on HBCA-CG@BG can entangled with each other, creating a hydrophobic barrier that prevents blood from flowing out. The hemostatic performance of CA-CG@BG is superior to that of CG in both rats and pigs. Interestingly, CA-CG@BG possesses unidirectional exudate removal. When applied to wound healing, the exudate can penetrate the hydrophobic HBCA-CG@BG to the hydrophilic CA-CG@BGHL, resulting in faster wound healing than CG. CA-CG@BG exhibits excellent cytocompatibility and hemocompatibility. This unique Janus dressing shows promise as a potential material for clinical applications in the future.

5.
Front Plant Sci ; 15: 1400201, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015293

RESUMO

Cotton production faces challenges in fluctuating environmental conditions due to limited genetic variation in cultivated cotton species. To enhance the genetic diversity crucial for this primary fiber crop, it is essential to augment current germplasm resources. High-throughput sequencing has significantly impacted cotton functional genomics, enabling the creation of diverse mutant libraries and the identification of mutant functional genes and new germplasm resources. Artificial mutation, established through physical or chemical methods, stands as a highly efficient strategy to enrich cotton germplasm resources, yielding stable and high-quality raw materials. In this paper, we discuss the good foundation laid by high-throughput sequencing of cotton genome for mutant identification and functional genome, and focus on the construction methods of mutant libraries and diverse sequencing strategies based on mutants. In addition, the important functional genes identified by the cotton mutant library have greatly enriched the germplasm resources and promoted the development of functional genomes. Finally, an innovative strategy for constructing a cotton CRISPR mutant library was proposed, and the possibility of high-throughput screening of cotton mutants based on a UAV phenotyping platform was discussed. The aim of this review was to expand cotton germplasm resources, mine functional genes, and develop adaptable materials in a variety of complex environments.

6.
Data Brief ; 55: 110639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39022698

RESUMO

Pseudomonas nitroreducens L4 was isolated from the interior of cotton plants, which showed strong biocontrol activity against Verticillium dahlia and other fungal pathogens. To elucidate the biocontrol mechanism, the genome sequence of L4 was sequenced using the Illumina and Nanopore sequencing platform. The assembled genome of L4 consisted of a single circular chromosome was 6,229,472 bp, with an average GC content of 64.95 %, 5,629 protein-coding genes, 72 tRNA, 16 rRNA and 1 tm RNA. Six secondary metabolite biosynthetic gene clusters are identified in the genome. The genome sequence provided a theoretical basis for analyzing the biocontrol mechanism of this strain.

7.
Front Microbiol ; 15: 1381883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952448

RESUMO

Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can alter root-associated and leaf-associated microbial diversities in plants. There are complex ecological dynamics at play, with each microbe contributing to a multitude of biotic and abiotic interactions, thus deciding the stability of the plant's ecosystem in response to the disease. Deciphering these networks of interactions is a challenging task. The inferential research in microbiome is also at a nascent stage, often constrained by the underlying analytical assumptions and the limitations with respect to the depth of sequencing. There is also no real consensus on network-wide statistics to identify the influential microbial players in a network. Guided by the latest developments in network science, including recently published metrics such as Integrated View of Influence (IVI) and some other centrality measures, this study provides an exposé of the most influential nodes in the rhizospheric and phyllospheric microbial networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, and resistant cotton varieties. It is evident from our results that the CLCuD-resistant Gossypium arboreum possesses an equal share of keystone species, which helps it to withstand ecological pressures. In the resistant variety, the phyllosphere harbors the most influential nodes, whereas in the susceptible variety, they are present in the rhizosphere. Based on hubness score, spreading score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, Candidatus woesebacteria, and Dyella were identified as the most influential nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54. This concept deciphers the diseased and healthy plant's response to viral disease, which may be microbially mediated.

8.
Plant Physiol Biochem ; 214: 108888, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38954944

RESUMO

Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.

9.
PeerJ ; 12: e17625, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948221

RESUMO

Plasmodesmata are transmembrane channels embedded within the cell wall that can facilitate the intercellular communication in plants. Plasmodesmata callose-binding (PDCB) protein that associates with the plasmodesmata contributes to cell wall extension. Given that the elongation of cotton fiber cells correlates with the dynamics of the cell wall, this protein can be related to the cotton fiber elongation. This study sought to identify PDCB family members within the Gossypium. hirsutum genome and to elucidate their expression profiles. A total of 45 distinct family members were observed through the identification and screening processes. The analysis of their physicochemical properties revealed the similarity in the amino acid composition and molecular weight across most members. The phylogenetic analysis facilitated the construction of an evolutionary tree, categorizing these members into five groups mainly distributed on 20 chromosomes. The fine mapping results facilitated a tissue-specific examination of group V, revealing that the expression level of GhPDCB9 peaked five days after flowering. The VIGS experiments resulted in a marked decrease in the gene expression level and a significant reduction in the mature fiber length, averaging a shortening of 1.43-4.77 mm. The results indicated that GhPDCB9 played a pivotal role in the cotton fiber development and served as a candidate for enhancing cotton yield.


Assuntos
Fibra de Algodão , Gossypium , Filogenia , Proteínas de Plantas , Plasmodesmos , Gossypium/genética , Gossypium/metabolismo , Plasmodesmos/metabolismo , Fibra de Algodão/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucanos/metabolismo , Família Multigênica , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
10.
Front Plant Sci ; 15: 1431835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957598

RESUMO

Cotton fiber, the mainstay of the world's textile industry, is formed by the differentiation of epidermal cells on the outer peridium of the ovule. The TBL gene family is involved in the regulation of epidermal hair development as well as response to abiotic stress. However, the function of TBL genes in cotton has not been systematically studied yet. Here, we identified 131 and 130 TBL genes in TM-1 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), respectively. Phylogenetic, gene structure, expression pattern and cis-element of promoter analysis were performed and compared. Single gene association analysis indicated that more TBL genes related to fiber quality traits were found in G. barbadense, whereas more genes associated with yield traits were found in G. hirsutum. One gene, GhTBL84 (GH_D04G0930), was induced by treatment at 4°C for 12 and 24 h in G. hirsutum and silencing of the GhTBL84 gene by VIGS technology in TM-1 can significantly improve the resistance of cotton seedlings to low temperature stress. In sum, our study conducted a genome-wide identification and comparative analysis of TBL family genes in G. hirsutum and G. barbadense and demonstrated a group of TBL genes significantly associated with fiber quality and excavated cold stress responsive gene, such as GhTBL84, providing a theoretical basis for further improving cotton agronomic traits.

11.
Ann Bot ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980751

RESUMO

BACKGROUND AND AIMS: Five species of cotton (Gossypium) were exposed to 38°C days during early vegetative development. Commercial cotton (Gossypium hirsutum) was contrasted with four wild cotton species (G. australe, G. bickii, G. robinsonii and G. sturtianum) that are endemic to central and northern Australia. METHODS: Plants were grown at daytime maxima of 30°C or 38°C for 25 d, commencing at the four-leaf stage. Leaf areas and shoot biomass were used to calculate relative rates of growth and specific leaf areas. Leaf gas exchange measurements revealed assimilation and transpiration rates, as well as electron transport rates (ETR) and carboxylation efficiency (CE) in steady-state conditions. Finally, leaf morphological traits (mean leaf area and leaf shape were quantified), along with leaf surface decorations, imaged using scanning electron microscopy. KEY RESULTS: Shoot morphology was differentially affected by heat, with three of the four wild species growing faster at 38°C than at 30°C, whereas early growth in G. hirsutum was severely inhibited by heat. Areas of individual leaves and leaf numbers both contributed to these contrasting growth responses, with fewer, smaller leaves at 38°C in G. hirsutum. CO2 assimilation and transpiration rates of G. hirsutum were also dramatically reduced by heat. Cultivated cotton failed to achieve evaporative cooling, contrasting with the transpiration-driven cooling in the wild species. Heat substantially reduced ETR and CE in G. hirsutum, with much smaller effects in the wild species. We speculate that leaf shape, as assessed by invaginations of leaf margins, and leaf size contributed to heat dispersal differentially among the five species. Similarly, reflectance of light radiation was also highly distinctive for each species. CONCLUSIONS: These four wild Australian relatives of cotton have adapted to hot days that are inhibitory to commercial cotton, deploying a range of physiological and structural adaptations to achieve accelerated growth at 38°C.

12.
Adv Sci (Weinh) ; : e2400445, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984458

RESUMO

Global water scarcity and extreme weather intensify drought stress, significantly reducing cotton yield and quality worldwide. Drought treatments are conducted using a population of chromosome segment substitution lines generated from E22 (G. hirsutum) and 3-79 (G. barbadense) as parental lines either show superior yields or fiber quality under both control and drought conditions. Fourteen datasets, covering 4 yields and 4 quality traits, are compiled and assessed for drought resistance using the drought resistance coefficient (DRC) and membership function value of drought resistance (MFVD). Genome-wide association studies, linkage analysis, and bulked segregant analysis are combined to analyze the DR-related QTL. A total of 121 significant QTL are identified by DRC and MFVD of the 8 traits. CRISPR/Cas9 and virus-induced gene silencing techniques verified DRR1 and DRT1 as pivotal genes in regulating drought resistant of cotton, with hap3-79 exhibiting greater drought resistance than hapE22 concerning DRR1 and DRT1. Moreover, 14 markers with superior yield and fiber quality are selected for drought treatment. This study offers valuable insights into yield and fiber quality variations between G. hirsutum and G. barbadense amid drought, providing crucial theoretical and technological backing for developing cotton varieties resilient to drought, with high yield and superior fiber quality.

13.
Mol Ecol ; : e17463, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984610

RESUMO

Here we investigate the evolutionary dynamics of five enzyme superfamilies (CYPs, GSTs, UGTs, CCEs and ABCs) involved in detoxification in Helicoverpa armigera. The reference assembly for an African isolate of the major lineages, H. a. armigera, has 373 genes in the five superfamilies. Most of its CYPs, GSTs, UGTs and CCEs and a few of its ABCs occur in blocks and most of the clustered genes are in subfamilies specifically implicated in detoxification. Most of the genes have orthologues in the reference genome for the Oceania lineage, H. a. conferta. However, clustered orthologues and subfamilies specifically implicated in detoxification show greater sequence divergence and less constraint on non-synonymous differences between the two assemblies than do other members of the five superfamilies. Two duplicated CYPs, which were found in the H. a. armigera but not H. a. conferta reference genome, were also missing in 16 Chinese populations spanning two different lineages of H. a. armigera. The enzyme produced by one of these duplicates has higher activity against esfenvalerate than a previously described chimeric CYP mutant conferring pyrethroid resistance. Various transposable elements were found in the introns of most detoxification genes, generating diverse gene structures. Extensive resequencing data for the Chinese H. a. armigera and H. a. conferta lineages also revealed complex copy number polymorphisms in 17 CCE001s in a cluster also implicated in pyrethroid metabolism, with substantial haplotype differences between all three lineages. Our results suggest that cotton bollworm has a versatile complement of detoxification genes which are evolving in diverse ways across its range.

14.
Small ; : e2402510, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984762

RESUMO

With the rapid advancement of electronic technology, traditional textiles are challenged to keep up with the demands of wearable electronics. It is anticipated that multifunctional textile-based electronics incorporating energy storage, electromagnetic interference (EMI) shielding, and photothermal conversion are expected to alleviate this problem. Herein, a multifunctional cotton fabric with hierarchical array structure (PPy/NiCoAl-LDH/Cotton) is fabricated by the introduction of NiCoAl-layered double hydroxide (NiCoAl-LDH) nanosheet arrays on cotton fibers, followed by polymerization and growth of continuous dense polypyrrole (PPy) conductive layers. The multifunctional cotton fabric shows a high specific areal capacitance of 754.72 mF cm-2 at 5 mA cm-2 and maintains a long cycling life (80.95% retention after 1000 cycles). The symmetrical supercapacitor assembled with this fabric achieves an energy density of 20.83 Wh cm-2 and a power density of 0.23 mWcm-2. Moreover, the excellent electromagnetic interference shielding (38.83 dB), photothermal conversion (70.2 °C at 1000 mW cm-2), flexibility and durability are also possess by the multifunctional cotton fabric. Such a multifunctional cotton fabric has great potential for using in new energy, smart electronics, and thermal management applications.

15.
Anal Biochem ; 694: 115604, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986795

RESUMO

The extraction of high-quality RNA from cotton (Gossypium spp.) is challenging because of the presence of high polyphenolics, polysaccharides, quinones, and other secondary metabolites. A high-throughput RNA extraction protocol is a prerequisite. This Triton-X-100-based RNA extraction method utilizes Polyvinyl pyrrolidone polymer (PVPP) treatment which efficiently removes phenolics, and the application of Lithium chloride (LiCl) has been found that successfully precipitated the high-quality RNA from cotton tissue. Cytoplasmic male sterility (CMS) is a maternally inherited trait associated with specific mitochondrial genome rearrangements or mutations. The suitability of RNA extracted from Cotton CMS lines was assessed. cDNA was synthesized from RNA and assayed for mitochondrial genes (cox3, nad3, nad9) associated with male sterility. This paper discuss the advantages and limitation of this protocol over existing protocol for RNA extraction for polyphenolics-rich plant tissue.

16.
J Integr Plant Biol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995105

RESUMO

Although the cell membrane and cytoskeleton play essential roles in cellular morphogenesis, the interaction between the membrane and cytoskeleton is poorly understood. Cotton fibers are extremely elongated single cells, which makes them an ideal model for studying cell development. Here, we used the sphingolipid biosynthesis inhibitor, fumonisin B1 (FB1), and found that it effectively suppressed the myeloblastosis (MYB) transcription factor GhMYB86, thereby negatively affecting fiber elongation. A direct target of GhMYB86 is GhTUB7, which encodes the tubulin protein, the major component of the microtubule cytoskeleton. Interestingly, both the overexpression of GhMYB86 and GhTUB7 caused an ectopic microtubule arrangement at the fiber tips, and then leading to shortened fibers. Moreover, we found that GhMBE2 interacted with GhMYB86 and that FB1 and reactive oxygen species induced its transport into the nucleus, thereby enhancing the promotion of GhTUB7 by GhMYB86. Overall, we established a GhMBE2-GhMYB86-GhTUB7 regulation module for fiber elongation and revealed that membrane sphingolipids affect fiber elongation by altering microtubule arrangement.

17.
Front Plant Sci ; 15: 1337560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988636

RESUMO

Over the years, thrips have transitioned from a minor nuisance to a major problem, significantly impacting the yield and quality of cotton. Unmanned aerial vehicles (UAVs) for plant protection have emerged as an effective alternative to traditional pesticide spraying equipment. UAVs offer advantages such as avoiding crop damage and enhancing pesticide deposition on the plants and have become the primary choice for pesticide application in cotton fields. In this study, a 2-year field experiment found that the thrips population in a cotton field in Xinjiang, China, exhibited gradual growth during the early flowering phase, peaking in late July. The thrips population gradually shifted from the lower canopy to the upper canopy as the cotton flowers opened layer by layer. From 09:00 to 11:00 (GMT+8) and 19:00 to 21:00 (GMT+8), thrips mainly flew outside the flowers, while from 17:00 to 19:00 (GMT+8), they mostly inhabited the inner whorls of flowers. The insecticides 10% cyantraniliprole oil dispersion and 10% spinetoram suspension concentrate, sprayed by UAV, had the best control effect on thrips, with 80.51% and 79.22% control effect after 7 days of spraying, respectively. The optimal spraying time for 10% cyantraniliprole oil dispersion was 19:00 (GMT+8), and the control effect on thrips reached 91.16% at 7 days of spraying. During the cotton flowering period, thrips inhabited flowers in the evening and flew outside during the day. The best control effect on thrips was achieved with UAV-sprayed 10% cyantraniliprole oil dispersion at 19:00 (GMT+8).

18.
PeerJ ; 12: e17682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993976

RESUMO

To determine the genes associated with the fiber strength trait in cotton, three different cotton cultivars were selected: Sea Island cotton (Xinhai 32, with hyper-long fibers labeled as HL), and upland cotton (17-24, with long fibers labeled as L, and 62-33, with short fibers labeled as S). These cultivars were chosen to assess fiber samples with varying qualities. RNA-seq technology was used to analyze the expression profiles of cotton fibers at the secondary cell wall (SCW) thickening stage (20, 25, and 30 days post-anthesis (DPA)). The results showed that a large number of differentially expressed genes (DEGs) were obtained from the three assessed cotton cultivars at different stages of SCW development. For instance, at 20 DPA, Sea Island cotton (HL) had 6,215 and 5,364 DEGs compared to upland cotton 17-24 (L) and 62-33 (S), respectively. Meanwhile, there were 1,236 DEGs between two upland cotton cultivars, 17-24 (L) and 62-33 (S). Gene Ontology (GO) term enrichment identified 42 functions, including 20 biological processes, 11 cellular components, and 11 molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified several pathways involved in SCW synthesis and thickening, such as glycolysis/gluconeogenesis, galactose metabolism, propanoate metabolism, biosynthesis of unsaturated fatty acids pathway, valine, leucine and isoleucine degradation, fatty acid elongation pathways, and plant hormone signal transduction. Through the identification of shared DEGs, 46 DEGs were found to exhibit considerable expressional differences at different fiber stages from the three cotton cultivars. These shared DEGs have functions including REDOX enzymes, binding proteins, hydrolases (such as GDSL thioesterase), transferases, metalloproteins (cytochromatin-like genes), kinases, carbohydrates, and transcription factors (MYB and WRKY). Therefore, RT-qPCR was performed to verify the expression levels of nine of the 46 identified DEGs, an approach which demonstrated the reliability of RNA-seq data. Our results provided valuable molecular resources for clarifying the cell biology of SCW biosynthesis during fiber development in cotton.


Assuntos
Parede Celular , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Gossypium/crescimento & desenvolvimento , Fibra de Algodão/análise , Parede Celular/metabolismo , Parede Celular/genética , Perfilação da Expressão Gênica , Transcriptoma
19.
Materials (Basel) ; 17(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998371

RESUMO

In this study, a combined multi-criteria decision-making (MCDM) approach that integrates the logarithm methodology of additive weights (LMAW) and the double normalization-based multiple aggregation (DNMA) methods has been utilized to determine the optimal fabric structures considering the performance characteristics of denim fabrics containing recycled cotton. This approach focuses on sustainability and performance criteria, applying advanced decision-making methodologies to provide in-depth analysis and guidance for denim fabric selection. In this research, 15 distinct criteria were taken into account. Alternatives were ranked based on outcomes obtained from these methods. Although it was not anticipated that the top-ranked alternatives would simultaneously fulfill the beneficial or non-beneficial orientation of all criteria, an examination of the top three alternatives (A12, A5, and A15) for both garment groups revealed that they indeed aligned with the pre-determined criterion orientation. This highlights the effectiveness of the multi-criteria decision-making approach in the context of this study.

20.
Molecules ; 29(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999102

RESUMO

Activated carbon has an excellent porous structure and is considered a promising adsorbent and electrode material. In this study, activated carbon fibers (ACFs) with abundant microporous structures, derived from natural cotton fibers, were successfully synthesized at a certain temperature in an Ar atmosphere and then activated with KOH. The obtained ACFs were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analysis, nitrogen and carbon dioxide adsorption-desorption analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption measurement. The obtained ACFs showed high porous qualities and had a surface area from 673 to 1597 m2/g and a pore volume from 0.33 to 0.79 cm3/g. The CO2 capture capacities of prepared ACFs were measured and the maximum capture capacity for CO2 up to 6.9 mmol/g or 4.6 mmol/g could be achieved at 0 °C or 25 °C and 1 standard atmospheric pressure (1 atm). Furthermore, the electrochemical capacitive properties of as-prepared ACFs in KOH aqueous electrolyte were also studied. It is important to note that the pore volume of the pores below 0.90 nm plays key roles to determine both the CO2 capture ability and the electrochemical capacitance. This study provides guidance for designing porous carbon materials with high CO2 capture capacity or excellent capacitance performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA