Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39201590

RESUMO

Glucocorticoids (GCs) are widely used for treating hematological malignancies despite their multiple adverse effects. The biological response to GCs relies on glucocorticoid receptor (GR) transrepression (TR) that mediates the anticancer effects and transactivation (TA) associated with the side effects. Selective GR agonists (SEGRAs) preferentially activating GR TR could offer greater benefits in cancer treatment. One of the well-characterized SEGRAs, 2-(4-acetoxyphenyl)-2-chloro-N-methylethylammonium-chloride (CpdA), exhibited anticancer activity; however, its translational potential is limited due to chemical instability. To overcome this limitation, we obtained CpdA derivatives, CpdA-01-CpdA-08, employing two synthetic strategies and studied their anti-tumor activity: 4-(1-hydroxy-2-(piperidin-1-yl)ethyl)phenol or CpdA-03 demonstrated superior GR affinity and stability compared to CpdA. In lymphoma Granta and leukemia CEM cell lines, CpdA-03 ligand exhibited typical SEGRA properties, inducing GR TR without triggering GR TA. CpdA-03 effects on cell viability, growth, and apoptosis were similar to the reference GR ligand, dexamethasone (Dex), and the source compound CpdA. In vivo testing of CpdA-03 activity against lymphoma on the transplantable P388 murine lymphoma model showed that CpdA-03 reduced tumor volume threefold, outperforming Dex and CpdA. In conclusion, in this work, we introduce a novel SEGRA CpdA-03 as a promising agent for lymphoma treatment with fewer side effects.


Assuntos
Antineoplásicos , Receptores de Glucocorticoides , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/metabolismo , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenetilaminas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Acetatos , Tiramina/análogos & derivados
2.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791514

RESUMO

Supplementation with fish oil rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) effectively reduces acute and chronic alcohol-induced hepatic steatosis. We aimed to find molecular mechanisms underlying the effects of n-3 PUFAs in alcohol-induced hepatic steatosis. Because free fatty acid receptor 4 (FFA4, also known as GPR120) has been found as a receptor for n-3 PUFAs in an ethanol-induced liver steatosis model, we investigated whether n-3 PUFAs protect against liver steatosis via FFA4 using AH7614, an FFA4 antagonist, and Ffa4 knockout (KO) mice. N-3 PUFAs and compound A (CpdA), a selective FFA4 agonist, reduced the ethanol-induced increase in lipid accumulation in hepatocytes, triglyceride content, and serum ALT levels, which were not observed in Ffa4 KO mice. N-3 PUFAs and CpdA also reduced the ethanol-induced increase in lipogenic sterol regulatory element-binding protein-1c expression in an FFA4-dependent manner. In Kupffer cells, treatment with n-3 PUFA and CpdA reversed the ethanol-induced increase in tumor necrosis factor-α, cyclooxygenase-2, and NLR family pyrin domain-containing 3 expression levels in an FFA4-dependent manner. In summary, n-3 PUFAs protect against ethanol-induced hepatic steatosis via the anti-inflammatory actions of FFA4 on Kupffer cells. Our findings suggest FFA4 as a therapeutic target for alcoholic hepatic steatosis.


Assuntos
Etanol , Ácidos Graxos Ômega-3 , Fígado Gorduroso Alcoólico , Células de Kupffer , Receptores Acoplados a Proteínas G , Animais , Masculino , Camundongos , Ácidos Graxos Ômega-3/farmacologia , Fígado Gorduroso Alcoólico/tratamento farmacológico , Fígado Gorduroso Alcoólico/prevenção & controle , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Células de Kupffer/metabolismo , Células de Kupffer/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Triglicerídeos/metabolismo
3.
Acta Pharmacol Sin ; 45(8): 1673-1685, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641746

RESUMO

Acute kidney injury (AKI) is defined as sudden loss of renal function characterized by increased serum creatinine levels and reduced urinary output with a duration of 7 days. Ferroptosis, an iron-dependent regulated necrotic pathway, has been implicated in the progression of AKI, while ferrostatin-1 (Fer-1), a selective inhibitor of ferroptosis, inhibited renal damage, oxidative stress and tubular cell death in AKI mouse models. However, the clinical translation of Fer-1 is limited due to its lack of efficacy and metabolic instability. In this study we designed and synthesized four Fer-1 analogs (Cpd-A1, Cpd-B1, Cpd-B2, Cpd-B3) with superior plasma stability, and evaluated their therapeutic potential in the treatment of AKI. Compared with Fer-1, all the four analogs displayed a higher distribution in mouse renal tissue in a pharmacokinetic assay and a more effective ferroptosis inhibition in erastin-treated mouse tubular epithelial cells (mTECs) with Cpd-A1 (N-methyl-substituted-tetrazole-Fer-1 analog) being the most efficacious one. In hypoxia/reoxygenation (H/R)- or LPS-treated mTECs, treatment with Cpd-A1 (0.25 µM) effectively attenuated cell damage, reduced inflammatory responses, and inhibited ferroptosis. In ischemia/reperfusion (I/R)- or cecal ligation and puncture (CLP)-induced AKI mouse models, pre-injection of Cpd-A1 (1.25, 2.5, 5 mg·kg-1·d-1, i.p.) dose-dependently improved kidney function, mitigated renal tubular injury, and abrogated inflammation. We conclude that Cpd-A1 may serve as a promising therapeutic agent for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Ferroptose , Camundongos Endogâmicos C57BL , Fenilenodiaminas , Animais , Ferroptose/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Camundongos , Masculino , Fenilenodiaminas/farmacologia , Fenilenodiaminas/uso terapêutico , Cicloexilaminas/farmacologia , Cicloexilaminas/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo
4.
J Am Vet Med Assoc ; 262(3): 391-396, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38171086

RESUMO

OBJECTIVE: The objective of this study was to determine hematologic changes of stored caprine whole blood in citrate phosphate dextrose adenine solution over a 28-day period. SAMPLE: Ten 250-mL bags of whole blood were collected from 10 female Boer goats from Louisiana State University's Division of Laboratory Animal Medicine herd. METHODS: 10 healthy blood donor goats were selected, and 250 mL of whole blood was drawn from each and stored at 2.78 °C. At the time of collection and every 7 days for a total of 28 days, samples were obtained from the blood bags to determine biochemical and hematologic values of collected blood. Only 5 of the 10 donors had baseline blood bag samples obtained for biochemical evaluation on day 0. At the end of 28 days, the remaining blood was submitted for aerobic and anaerobic culture. RESULTS: Blood values remained within suitable limits for transfusion and below 1% hemolysis for up to 21 days in most samples. Packed cell volume did not change significantly from day 0 to day 28. Lactate significantly increased over the 28 days, though not as dramatically as expected on the basis of other blood storage studies. pH decreased due to anticoagulant acidity but did not drop below 7. Cultures were negative on all blood bags. CLINICAL RELEVANCE: Changes over time are similar to that in other species, and caprine blood appears biochemically and hematologically stable for up to 21 days in storage. In vivo trials are needed for safety and efficacy.


Assuntos
Preservação de Sangue , Cabras , Humanos , Animais , Feminino , Preservação de Sangue/veterinária , Glucose , Transfusão de Sangue/veterinária , Eritrócitos , Ácido Láctico , Fosfatos
5.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139366

RESUMO

This review is focused on synephrine, the principal phytochemical found in bitter orange and other medicinal plants and widely used as a dietary supplement for weight loss/body fat reduction. We examine different aspects of synephrine biology, delving into its established and potential molecular targets, as well as its mechanisms of action. We present an overview of the origin, chemical composition, receptors, and pharmacological properties of synephrine, including its anti-inflammatory and anti-cancer activity in various in vitro and animal models. Additionally, we conduct a comparative analysis of the molecular targets and effects of synephrine with those of its metabolite, selective glucocorticoid receptor agonist (SEGRA) Compound A (CpdA), which shares a similar chemical structure with synephrine. SEGRAs, including CpdA, have been extensively studied as glucocorticoid receptor activators that have a better benefit/risk profile than glucocorticoids due to their reduced adverse effects. We discuss the potential of synephrine usage as a template for the synthesis of new generation of non-steroidal SEGRAs. The review also provides insights into the safe pharmacological profile of synephrine.


Assuntos
Citrus , Sinefrina , Animais , Sinefrina/efeitos adversos , Receptores de Glucocorticoides/metabolismo , Extratos Vegetais/farmacologia , Anti-Inflamatórios , Citrus/metabolismo
6.
Biomed Pharmacother ; 165: 115145, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37454592

RESUMO

Glucocorticoids (GCs), steroid hormones that depend on glucocorticoid receptor (GR) binding for their action, are essential for regulating numerous homeostatic functions in the body.GR signals are biased, that is, GR signals are various in different tissue cells, disease states and ligands. This biased regulation of GR signaling appears to depend on ligand-induced metameric regulation, protein post-translational modifications, assembly at response elements, context-specific assembly (recruitment of co-regulators) and intercellular differences. Based on the bias regulation of GR, selective GR agonists and modulators (SEGRAMs) were developed to bias therapeutic outcomes toward expected outcomes (e.g., anti-inflammation and immunoregulation) by influencing GR-mediated gene expression. This paper provides a review of the bias regulation and mechanism of GR and the research progress of drugs.


Assuntos
Glucocorticoides , Receptores de Glucocorticoides , Receptores de Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Anti-Inflamatórios/farmacologia , Transdução de Sinais , Ligação Proteica
7.
Talanta ; 254: 124124, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459873

RESUMO

The application of silicon (Si) substrate as photoelectrode in light-addressable electrochemistry (LAE) is severely limited due to its ease of surface oxidation. The resulted silicon oxide (SiOx) layer is electronically insulating and blocks charge transfer between the electrode and electrolyte. Keeping the Si from being oxidized is a key challenge for its practical use as a semiconductor electrode. In this work, we find that by developing a thin layer of polydopamine film on the surface of Si substrate, followed by carbonization at 550 °C, the natural oxidation of Si substrate can be successfully forestalled. When applied as an electrode, it is further found that the carbonized polydopamine (cPDA) layer can also prevent anodic oxidation of Si. The cPDA layer-modified Si substrate exhibits good photoelectrochemical performance and great stability, with no obvious signal decrease under ambient environment over 32 h. Our work here provides a new modification strategy for anti-oxidation of Si substrate and it is promising in the application of light-addressable electrochemical sensing and imaging.


Assuntos
Indóis , Dióxido de Silício , Eletrodos , Oxirredução
8.
Mater Today Bio ; 17: 100441, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36388462

RESUMO

Thyroid cancer, as one of the most common endocrine cancers, has seen a surge in incidence in recent years. This is most likely due to the lack of specificity and accuracy of its traditional diagnostic modalities, leading to the overdiagnosis of thyroid nodules. Although there are several treatment options available, they are limited to surgery and 131I radiation therapy that come with significant side effects and hence cannot meet the treatment needs of anaplastic thyroid carcinoma with very high malignancy. Optical imaging that utilizes optical absorption, refraction and scattering properties, not only observes the structure and function of cells, tissues, organs, or even the whole organism to assist in diagnosis, but can also be used to perform optical therapy to achieve targeted non-invasive and precise treatment of thyroid cancer. These applications of screening, diagnosis, and treatment, lend to optical imaging's promising potential within the realm of thyroid cancer surgical navigation. Over the past decade, research on optical imaging in the diagnosis and treatment of thyroid cancer has been growing year by year, but no comprehensive review on this topic has been published. Here, we review key advances in the application of optical imaging in the diagnosis and treatment of thyroid cancer and discuss the challenges and potential for clinical translation of this technology.

9.
Transfusion ; 62 Suppl 1: S105-S113, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35748681

RESUMO

BACKGROUND: Blood products are frequently exposed to room temperature or higher for longer periods than permitted by policy. We aimed to investigate if this resulted in a measurable effect on common quality parameters and viscoelastic hemostatic function of cold stored CPDA-1 whole blood. STUDY DESIGN AND METHODS: 450 ml of whole blood from 16 O Rh(D) positive donors was collected in 63 ml of CPDA-1 and stored cold. Eights bags were exposed to five weekly 4-h long transient temperature changes to 28°C. Eight bags were stored continuously at 4°C as a control. Samples were collected at baseline on day 1, after the first cycle on day 1 and weekly before each subsequent cycle (day 7, 14, 21, 28 and 35). Hemolysis, hematological parameters, pH, glucose, lactate, potassium, thromboelastography, INR, APTT, fibrinogen, and factor VIII were measured. RESULTS: CPDA-1 whole blood repeatedly exposed to 28°C did not show reduced quality compared to the control group on day 35. Two units in the test group had hemolysis of 1.1% and 1.2%, and two in the control group hemolysis of 0.8%. Remaining thromboelastography clot strength (MA) on day 35 was 51.7 mm (44.8, 58.6) in the test group and 46.1 (41.6, 50.6) in the control group (p = .023). Platelet count was better preserved in the test group (166.7 [137.8, 195.6] vs. 117.8 [90.3, 145.2], p = .018). One sample in the test group was positive for Cutibacterium acnes on day 35 + 6. CONCLUSION: Hemolysis findings warrant further investigation. Other indicators of quality were not negatively affected.


Assuntos
Preservação de Sangue , Hemostáticos , Adenina , Preservação de Sangue/métodos , Citratos , Glucose/farmacologia , Hemólise , Humanos , Fosfatos , Contagem de Plaquetas , Temperatura
10.
ACS Appl Mater Interfaces ; 13(29): 34658-34670, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34254774

RESUMO

Photoelectrochemical (PEC) hydrogen evolution has been acknowledged as a promising "green" technique to convert solar energy into clean chemical fuel. Photoanodes play a key role in determining the performance of PEC systems, spurring numerous efforts to develop advanced materials as well as structures to improve the photoconversion efficiency. In this work, we report the rational design of a plasmonic hierarchical nanorod array, composed of oriented one-dimensional (1D) CdS nanorods decorated with a uniformly wrapped graphite-like carbon (CPDA) layer and Au nanoparticles (Au NPs), as highly efficient photoanode materials. An interfacial in situ reduction-graphitization method has been conducted to prepare the CdS/CPDA/Au nanoarchitecture, where polydopamine (PDA) coating was used as a C source and a reductant. The CdS/CPDA/Au nanoarray photoanode demonstrates superior photoconversion efficiency with a photocurrent density of 8.74 mA/cm2 and an IPCE value (480 nm) of 30.2% (at 1.23 V vs RHE), under simulated sunlight irradiation, which are 12.7 and 13.5 times higher than pristine CdS. The significant enhancement of PEC performance is mainly benefited from the increase of the entire quantum yield and efficiency due to the formation of a Schottky rectifier, localized surface plasmon resonance (LSPR)-enhanced light absorption, and promoted hot-electron injection from interlayered graphene-like carbon. More importantly, thanks to the inhibited charge carrier recombination process and transferred oxidation reaction sites, the fabricated CdS/CPDA/Au photoelectrode exhibits lengthened electron lifetimes and better photostability, illustrating its wonderful potential for future PEC application.

11.
Transfusion ; 61 Suppl 1: S80-S89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269444

RESUMO

BACKGROUND: Collection of non-leukoreduced citrate-phosphate-dextrose-adenine (CPDA-1) whole blood is performed in walking blood banks. Blood collected under field conditions may have increased risk of bacterial contamination. This study was conducted to examine the effects of WBC reduction and storage temperature on growth of Escherichia coli (ATCC® 25922™) in CPDA-1 whole blood. METHODS: CPDA-1 whole blood of 450 ml from 10 group O donors was inoculated with E. coli. Two hours after inoculation, the test bags were leukoreduced with a platelet-sparing filter. The control bags remained unfiltered. Each whole blood bag was then split into three smaller bags for further storage at 2-6°C, 20-24°C, or 33-37°C. Bacterial growth was quantified immediately, 2 and 3 h after inoculation, on days 1, 3, 7, and 14 for all storage temperatures, and on days 21 and 35 for storage at 2-6°C. RESULTS: Whole blood was inoculated with a median of 19.5 (range 12.0-32.0) colony-forming units per ml (CFU/ml) E. coli. After leukoreduction, a median of 3.3 CFU/ml (range 0.0-33.3) E. coli remained. In the control arm, the WBCs phagocytized E. coli within 24 h at 20-24°C and 33-37°C in 9 of 10 bags. During storage at 2-6°C, a slow self-sterilization occurred over time with and without leukoreduction. CONCLUSIONS: Storage at 20-24°C and 33-37°C for up to 24 h before leukoreduction reduces the risk of E. coli-contamination in CPDA-1 whole blood. Subsequent storage at 2-6°C will further reduce the growth of E. coli.


Assuntos
Preservação de Sangue , Segurança do Sangue , Infecções por Escherichia coli/microbiologia , Escherichia coli/crescimento & desenvolvimento , Procedimentos de Redução de Leucócitos , Adenina/química , Preservação de Sangue/métodos , Citratos/química , Escherichia coli/isolamento & purificação , Glucose/química , Humanos , Temperatura
12.
Pharmacol Res ; 166: 105334, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33276107

RESUMO

Glucocorticoids (GCs) plays an irreplaceable role in inflammation and immune responses, fat metabolism and sugar metabolism, it is often used for the treatment of asthma, rheumatoid arthritis and allergic rhinitis clinically, but long-term or high-dose use will produce adverse drug reactions (ADRs). Its biological action is mediated by glucocorticoid receptors (GRs), of which the oligomerization state is closely related to the target gene of which the GRs act. A leading hypothesis is that the beneficial anti-inflammatory effects of GCs occur through the transrepression mechanism mediated by GR monomers, while ADRs may be dependent on the transactivation mechanism mediated by GR dimers. However, in recent years, multiple studies have shown that the transactivation and transrepression functions of the GR dimer also confer anti-inflammatory effects. Furthermore, some studies have shown that some selective glucocorticoid receptor agonists and modulators (SEGRAMs) have good separation characteristics (i.e., preferentially mediate the transrepression of proinflammatory genes or preferentially activate anti-inflammatory target genes). This article reviewed the formation of GR dimers, the role of GR dimers in the inflammation and immune responses, and the progress of SEGRAMs to provide novel ideas for further understanding the anti-inflammatory mechanism of GR and the development of SEGRAMs.


Assuntos
Inflamação/imunologia , Receptores de Glucocorticoides/imunologia , Animais , Glucocorticoides/imunologia , Humanos , Imunidade , Multimerização Proteica , Receptores de Glucocorticoides/química
13.
Vet Clin Pathol ; 49(4): 545-556, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33277948

RESUMO

BACKGROUND: Hemotherapy in ruminants is limited to whole blood transfusions, sometimes with stored blood for up to 42 days, but little attention has been given to the effect of blood storage times and recipient responses after transfusions. OBJECTIVES: We aimed to evaluate the hematologic and serum biochemical effects after allogeneic blood transfusion with either fresh or stored blood in sheep. We also sought to examine hematologic and biochemical analyte changes in the store blood. METHODS: Eighteen sheep underwent a single phlebotomy to remove 40% of their blood volume. The sheep were divided into three experimental groups, G0, G15, and G35, which included six animals, each receiving 20 mL/kg of either fresh blood or blood stored in citrate, phosphate, dextrose, and adenine (CPDA-1) bags for 15 and 35 days, respectively. Biochemical, hematologic, coagulation, blood gas, lipid peroxidation, and oxidative stress test evaluations were performed using the blood samples gathered at T0 (before transfusion), 30 minutes (T30m), 6, 12, 24, 48, 72, and 96 hours (T6h-T96h), 8 days (T8d), and 16 days (T16d) after transfusions. RESULTS: Sheep exhibited increases in packed cell volumes, red blood cell counts, and total hemoglobin concentrations at T30m (P < .05). G35 animals had greater plasma hemoglobin concentrations at T12h and decreased blood pH values at T6h, characterized by slight metabolic acidemia. Regarding oxidative stress, G35 animals had decreased catalase activities from T0 at T30m, T6h, T12h, and T24h, indicating that hemolysis had occurred, which was supported by concomitant increases in bilirubin. CONCLUSIONS: Sheep transfused with 35-day stored blood exhibited greater hematologic, blood gas, biochemical, and oxidative alterations; however, anemic animals without comorbidities effectively reversed those alterations.


Assuntos
Preservação de Sangue , Transplante de Células-Tronco Hematopoéticas , Animais , Preservação de Sangue/veterinária , Transfusão de Sangue/veterinária , Glucose , Transplante de Células-Tronco Hematopoéticas/veterinária , Estresse Oxidativo , Ovinos
14.
Angew Chem Int Ed Engl ; 59(20): 7915-7920, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32097514

RESUMO

This contribution follows the recent remarkable catalysis observed by Groves et al. in hydrogen-abstraction reactions by a) an oxoferryl porphyrin radical-cation complex [Por⋅+ FeIV (O)Lax ] and b) a hydroxoiron porphyrazine ferric complex [PyPzFeIII (OH)Lax ], both of which involve positively charged substituents on the outer circumference of the respective macrocyclic ligands. These charge-coronated complexes are analogues of the biologically important Compound I (Cpd I) and synthetic hydroxoferric species, respectively. We demonstrate that the observed enhancement of the H-abstraction catalysis for these systems is a purely electrostatic effect, elicited by the local charges embedded on the peripheries of the respective macrocyclic ligands. Our findings provide new insights into how electrostatics can be employed to tune the catalytic activity of metalloenzymes and can thus contribute to the future design of new and highly efficient hydrogen-abstraction catalysts.

15.
Transfus Apher Sci ; 58(2): 179-182, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30777709

RESUMO

BACKGROUND: Biochemical and metabolic changes in stored RBC may influence the clinical outcome. We aimed to study the temporal changes in the biochemical parameters and the effect of buffy-coat reduction on RBC storage lesions. MATERIALS AND METHODS: A prospective observational study was conducted on fifteen RBC units five each of buffy coat reduced CPD/SAGM (quadruple bags), non-buffycoat reduced CPD/SAGM (triple bags) and non-buffycoat reduced CPDA (double bags). Biochemical parameters such as K+, LDH, pH plasma hemoglobin and percentage hemolysis were measured sequentially on day 7,14, 21, 28, 35 and 42. The data was analyzed using SPSS version 20. RESULTS: Extracellular K+ and LDH increased rapidly starting from the first week of storage. And the all the parameters including percentage hemolysis were significantly higher in RBC stored in CPDA (double bags) compared to that stored in SAGM (triple and quadruple). The difference observed in buffy-coat reduced units in comparison to the non-leukocyte reduced units were statistically not significant. CONCLUSION: The quality of red cells stored in SAGM was superior to that suspended in CPDA measured in terms of percent hemolysis, plasma hemoglobin, potassium and LDH. There was no effect of buffy-coat leukocyte reduction on the red cell storage lesion.


Assuntos
Preservação de Sangue/métodos , Eritrócitos/metabolismo , Humanos , Estudos Prospectivos
16.
Autophagy ; 14(12): 2049-2064, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30215534

RESUMO

Glucocorticoids are widely used to treat inflammatory disorders; however, prolonged use of glucocorticoids results in side effects including osteoporosis, diabetes and obesity. Compound A (CpdA), identified as a selective NR3C1/glucocorticoid receptor (nuclear receptor subfamily 3, group C, member 1) modulator, exhibits an inflammation-suppressive effect, largely in the absence of detrimental side effects. To understand the mechanistic differences between the classic glucocorticoid dexamethasone (DEX) and CpdA, we looked for proteins oppositely regulated in bone marrow-derived macrophages using an unbiased proteomics approach. We found that the autophagy receptor SQSTM1 but not NR3C1 mediates the anti-inflammatory action of CpdA. CpdA drives SQSTM1 upregulation by recruiting the NFE2L2 transcription factor to its promoter. In contrast, the classic NR3C1 ligand dexamethasone recruits NR3C1 to the Sqstm1 promoter and other NFE2L2-controlled gene promoters, resulting in gene downregulation. Both DEX and CpdA induce autophagy, with marked different autophagy characteristics and morphology. Suppression of LPS-induced Il6 and Ccl2 genes by CpdA in macrophages is hampered upon Sqstm1 silencing, confirming that SQSTM1 is essential for the anti-inflammatory capacity of CpdA, at least in this cell type. Together, these results demonstrate how off-target mechanisms of selective NR3C1 ligands may contribute to a more efficient anti-inflammatory therapy.


Assuntos
Acetatos/farmacologia , Anti-Inflamatórios/farmacologia , Inflamação/genética , Inflamação/prevenção & controle , Macrófagos/efeitos dos fármacos , Receptores de Glucocorticoides/agonistas , Proteína Sequestossoma-1/fisiologia , Tiramina/análogos & derivados , Animais , Células Cultivadas , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/metabolismo , Proteína Sequestossoma-1/genética , Ativação Transcricional/efeitos dos fármacos , Tiramina/farmacologia
17.
Microbiology (Reading) ; 164(3): 410-419, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458560

RESUMO

A variety of bacteria, including Escherichia coli, are known to enter the viable but non-culturable (VBNC) state under various stress conditions. During this state, cells lose colony-forming activities on conventional agar plates while retaining signs of viability. Diverse environmental stresses including starvation induce the VBNC state. However, little is known about the genetic mechanism inducing this state. Here, we aimed to reveal the genetic determinants of the VBNC state of E. coli. We hypothesized that the VBNC state is a process wherein specific gene products important for colony formation are depleted during the extended period of stress conditions. If so, higher expression of these genes would maintain colony-forming activities, thereby restraining cells from entering the VBNC state. From an E. coli plasmid-encoded ORF library, we identified genes that were responsible for maintaining high colony-forming activities after exposure to starvation condition. Among these, cpdA encoding cAMP phosphodiesterase exhibited higher performance in the maintenance of colony-forming activities. As cpdA overexpression decreases intracellular cAMP, cAMP or its complex with cAMP-receptor protein (CRP) may negatively regulate colony-forming activities under stress conditions. We confirmed this using deletion mutants lacking adenylate cyclase or CRP. These mutants fully maintained colony-forming activities even after a long period of starvation, while wild-type cells lost most of this activity. Thus, we concluded that the lack of cAMP-CRP effectively retains high colony-forming activities, indicating that cAMP-CRP acts as a positive regulator necessary for the induction of the VBNC state in E. coli.


Assuntos
Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Estresse Fisiológico/genética , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Proteína Receptora de AMP Cíclico/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Biblioteca Gênica
18.
Clin Hemorheol Microcirc ; 66(2): 143-155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282803

RESUMO

BACKGROUND: Erythrocytes undergo irreversible morphological and biochemical changes during storage. Reduced levels of deformability have been reported for stored erythrocytes. Erythrocyte deformability is essential for healthy microcirculation. OBJECTIVE: The aim of this study is to evaluate shear stress (SS) induced improvements of erythrocyte deformability in stored blood. METHODS: Deformability changes were evaluated by applying physiological levels of SS (5 and 10 Pa) in metabolically depleted blood for 48 hours and stored blood for 35 days with citrate phosphate dextrose adenine-1 (CPDA-1). Laser diffractometry was used to measure erythrocyte deformability before and after application of SS. RESULTS: Erythrocyte deformability, as a response to continuous SS, was significantly improved in metabolically depleted blood, whereas it was significantly impaired in the blood stored for 35 days with CPDA-1 (p≤0.05). The SS-induced improvements of deformability were deteriorated due to storage and relatively impaired according to the storage time. However, deformability of stored blood after exposure to mechanical stress tends to increase at low levels of shear while decreasing at high SS levels. CONCLUSION: Impairment of erythrocyte deformability after storage may contribute to impairments in the recipient's microcirculation after blood transfusion. The period of the storage should be considered to prevent microcirculatory problems and insufficient oxygen delivery to the tissues.


Assuntos
Preservação de Sangue/métodos , Deformação Eritrocítica/fisiologia , Eritrócitos/fisiologia , Estresse Mecânico , Humanos
19.
FEMS Microbiol Lett ; 362(22)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26424768

RESUMO

Cyclic-3',5'-adenosine monophosphate (cAMP) is a universal second messenger that regulates vital activities in bacteria and eukaryotes. Enzymes that hydrolyze cAMP, called phosphodiesterases (PDEs), negatively regulate the levels of this messenger molecule and are therefore crucial for signal 'termination'. In this minireview, I shall summarize the available literature on bacterial cAMP-PDEs, with particular emphasis on enzymes belonging to the ubiquitously encoded Class III PDE family exemplified by CpdA from Escherichia coli and Rv0805 from Mycobacterium tuberculosis. Using available biochemical, structural and biological information, I shall make a case for re-examining the functions of these enzymes as merely regulators of intrabacterial cAMP levels and suggest that some members of this class may have evolved cAMP-independent functions as well. Finally, I shall highlight the major lacunae in our understanding of these enzymes and present unanswered questions in the area.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , AMP Cíclico/metabolismo , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , Hidrólise
20.
Thromb Res ; 133(2): 285-92, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24360116

RESUMO

INTRODUCTION: Recently extracellular vesicles (exosomes, microparticles also referred to as microvesicles and apoptotic bodies) have attracted substantial interest as potential biomarkers and therapeutic vehicles. However, analysis of microparticles in biological fluids is confounded by many factors such as the activation of cells in the blood collection tube that leads to in vitro vesiculation. In this study we aimed at identifying an anticoagulant that prevents in vitro vesiculation in blood plasma samples. MATERIALS AND METHODS: We compared the levels of platelet microparticles and non-platelet-derived microparticles in platelet-free plasma samples of healthy donors. Platelet-free plasma samples were isolated using different anticoagulant tubes, and were analyzed by flow cytometry and Zymuphen assay. The extent of in vitro vesiculation was compared in citrate and acid-citrate-dextrose (ACD) tubes. RESULTS: Agitation and storage of blood samples at 37 °C for 1 hour induced a strong release of both platelet microparticles and non-platelet-derived microparticles. Strikingly, in vitro vesiculation related to blood sample handling and storage was prevented in samples in ACD tubes. Importantly, microparticle levels elevated in vivo remained detectable in ACD tubes. CONCLUSIONS: We propose the general use of the ACD tube instead of other conventional anticoagulant tubes for the assessment of plasma microparticles since it gives a more realistic picture of the in vivo levels of circulating microparticles and does not interfere with downstream protein or RNA analyses.


Assuntos
Anticoagulantes/metabolismo , Plaquetas/citologia , Micropartículas Derivadas de Células/metabolismo , Ácido Cítrico/metabolismo , Glucose/análogos & derivados , Adolescente , Adulto , Plaquetas/efeitos dos fármacos , Exossomos/metabolismo , Feminino , Citometria de Fluxo , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA