Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181669

RESUMO

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Assuntos
Ácidos Sulfúricos , Ácidos Sulfúricos/química , Aerossóis , Modelos Químicos , Poluentes Atmosféricos/química , Simulação de Dinâmica Molecular , Atmosfera/química
2.
Photochem Photobiol ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095969

RESUMO

Biogenic hydrocarbons are emitted into the Earth's atmosphere by terrestrial vegetation as by-products of photosynthesis. Isoprene is one such hydrocarbon and is the second most abundant volatile organic compound emitted into the atmosphere (after methane). Reaction with ozone represents an important atmospheric sink for isoprene removal, forming carbonyl oxides (Criegee intermediates) with extended conjugation. In this manuscript, we argue that the extended conjugation of these Criegee intermediates enables electronic excitation of these compounds, on timescales that are competitive with their slow unimolecular decay and bimolecular chemistry. We show that the complexation of methacrolein oxide with water enhances the absorption cross section of the otherwise dark S1 state, potentially revealing a new avenue for forming lower volatility compounds via tropospherically relevant photochemistry.

3.
Sci Total Environ ; 949: 174877, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047816

RESUMO

The bimolecular reactions between Criegee intermediates (CIs) and atmospheric trace species have been extensively investigated, with a particular focus on the reaction with water, while the catalytic role of atmospheric organic compounds in hydration reactions was often neglected. In this study, we employed quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations to investigate the catalytic effects of atmospheric organic amines, organic acids, and alcohols on the hydration reactions of CIs in the gas phase and at the gas-liquid interface. The catalytic reactions were found to follow a cyclic catalytic structure and a stepwise reaction mechanism. Gas-phase studies revealed that organic acids exhibited stronger catalytic effects compared to amines and alcohols, and the catalytic efficiency of amines and alcohols was similar to those of single water molecule. In addition, the catalytic reaction barriers of organic acids and alcohols were positively correlated with their gas-phase acidity (R2 = 0.94 to 0.97). A negative correlation was observed between the catalytic reaction barrier of amines and their gas-phase basicity (R2 = 0.84 to 0.90) and proton affinity (R2 = 0.84 to 0.92). At the gas-liquid interface, organic acids promoted the formation of hydroxyethyl hydroperoxide (HEHP, CH3CH(OH)(OOH)), organic acid ions, and H3O+, whereas the catalytic hydration of CIs by organic amines resulted in the formation of CH3CH(OH)OO and amine ions. Both HEHP and CH3CH(OH)OO can be further decomposed to form OH and HO2, or participate in new particles formation as precursors. This study complements the research gap on the reaction of CIs with water, providing valuable insights into the atmospheric sources of HEHP and HOx as well as the formation of secondary organic aerosols (SOAs).

4.
Environ Sci Technol ; 58(26): 11587-11595, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900151

RESUMO

Organic molecules in the environment oxidatively degrade by a variety of free radical, microbial, and biogeochemical pathways. A significant pathway is heterogeneous autoxidation, in which degradation occurs via a network of carbon and oxygen centered free radicals. Recently, we found evidence for a new heterogeneous autoxidation mechanism of squalene that is initiated by hydroxyl (OH) radical addition to a carbon-carbon double bond and apparently propagated through pathways involving Criegee Intermediates (CI) produced from ß-hydroxy peroxy radicals (ß-OH-RO2•). It remains unclear, however, exactly how CI are formed from ß-OH-RO2•, which could occur by a unimolecular or bimolecular pathway. Combining kinetic models and multiphase OH oxidation measurements of squalene, we evaluate the kinetic viability of three mechanistic scenarios. Scenario 1 assumes that CI are formed by the unimolecular bond scission of ß-OH-RO2•, whereas Scenarios 2 and 3 test bimolecular pathways of ß-OH-RO2• to yield CI. Scenario 1 best replicates the entire experimental data set, which includes effective uptake coefficients vs [OH] as well as the formation kinetics of the major products (i.e., aldehydes and secondary ozonides). Although the unimolecular pathway appears to be kinetically viable, future high-level theory is needed to fully explain the mechanistic relationship between CI and ß-OH-RO2• in the condensed phase.


Assuntos
Oxirredução , Esqualeno , Esqualeno/química , Esqualeno/análogos & derivados , Cinética , Radical Hidroxila/química , Modelos Químicos
5.
Chemistry ; 30(29): e202400026, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38501221

RESUMO

While π-bonds typically undergo cycloaddition with ozone, resulting in the release of much-noticed carbonyl O-oxide Criegee intermediates, lone-pairs of electrons tend to selectively accept a single oxygen atom from O3, producing singlet dioxygen. We questioned whether the introduction of potent electron-donating groups, akin to N-heterocyclic olefins, could influence the reactivity of double bonds - shifting from cycloaddition to oxygen atom transfer or generating lesser-known, yet stabilized, donor-substituted Criegee intermediates. Consequently, we conducted a comparative computational study using density functional theory on a series of model olefins with increasing polarity due to (asymmetric) π-donor substitution. Reaction path computations indicate that highly polarized double bonds, instead of forming primary ozonides in their reaction with O3, exhibit a preference for accepting a single oxygen atom, resulting in a zwitterionic species formally identified as a carbene-carbonyl adduct. This previously unexplored reactivity potentially introduces aldehyde umpolung chemistry (Breslow intermediate) through olefin ozonolysis. Considering solvent effects implicitly reveals that increased solvent polarity further directs the trajectories toward a single oxygen atom transfer reactivity by stabilizing the zwitterionic character of the transition state. The competing modes of chemical reactivity can be explained by a bifurcation of the reaction valley in the post-transition state region.

6.
Chempluschem ; 88(9): e202300354, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37635074

RESUMO

Criegee intermediates (CIs), R1 R2 COO, are active molecules produced in the atmosphere from the ozonolysis of alkenes. Here, we systematically evaluated the reactivity of ten CIs with carbon monoxide and carbon dioxide using CCSD(T)-F12/cc-pVTZ-F12//B3LYP/6-311+G(2d,2p) energies and transition state theory. Many previous studies focused on alkyl substitution, but here we evaluated both alkyl and vinyl substitution toward the reactivity by studying five anti-type CIs: CH2 OO, anti-CH3 CHOO, anti-cis-C2 H5 CHOO, anti-trans-MACRO, anti-cis-MACRO; and five syn-type CIs: syn-CH3 CHOO, (CH3 )2 COO, syn-trans-C2 H5 CHOO, syn-trans-MVKO, and syn-cis-MVKO. Our study showed that reactions involving CO2 have a large substituent dependence varying nearly five orders of magnitude, while those involving CO have a much smaller two orders of magnitude difference. Analysis based on the strain interaction model showed that deformation of the CI is an important feature in determining the reactivity with CO2 . On the other hand, we used the OO and CO bond ratios to analyze the zwitterionic character of the CIs. We found that vinyl substitution with π-conjugation results in smaller zwitterionic character and lower reactivity with CO. Lastly, the reactivity of CIs with CO as well as CO2 were found to be not fast enough to be important in an atmospheric context.

7.
Sci Total Environ ; 896: 165281, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406701

RESUMO

Night-time oxidation significantly affects the atmospheric concentration of primary and secondary air pollutants but is poorly constrained over South Asia. Here, using a comprehensively measured and unprecedented set of precursors and sinks of Stabilized Criegee Intermediates (SCI), in the summertime air of the Indo-Gangetic Plain (IGP), we investigate the chemistry, and abundance in detail. This study reports the first summertime levels from the IGP of ethene, propene, 1-butene, cis-2-butene, trans-2-butene, 1-pentene, cis-2-pentene, trans-2-pentene, and 1-hexene and their possible roles in SCI chemistry. Ethene, propene, and 1-butene were the highest ambient alkenes in both the summer and winter seasons. Applying chemical steady-state to the measured precursors, the average calculated SCI concentrations were 4.4 (±3.6) × 103 molecules cm-3, with Z-CH3CHOO (55 %) as the major SCI. Z-RCHOO (35 %) and α-pinene derived PINOO (34 %) were identified as the largest contributors to SCI with a 7.8 × 105 molecules cm-3 s-1 production rate. The peak SCI occurred during the evenings. For all SCI species, the loss was dominated (>50 %) by unimolecular decomposition or reactions with water vapor or water vapor dimer. Pollution events influenced by crop burning resulted in significantly elevated SCI production (2.1 times higher relative to non-polluted periods) reaching as high as (7.4 ± 2.5) × 105 molecules cm-3 s-1. Among individual SCI species, Z-CH3CHOO was highest in all the plume events measured accounting for at least ~41 %. Among alkenes, trans-2-butene was the highest contributor to P(SCI) in plume events ranging from 22 to 32 %. SCIs dominated the night-time oxidation of sulfur dioxide with rates as high as 1.4 (±1.1) × 104 molecules cm-3 s-1 at midnight, suggesting that this oxidation pathway could be a significant source of fine mode sulfate aerosols over the Indo-Gangetic Plain, especially during summertime biomass burning pollution episodes.

8.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982477

RESUMO

Criegee intermediates (CIs) are important in the sink of many atmospheric substances, including alcohols, organic acids, amines, etc. In this work, the density functional theory (DFT) method was used to calculate the energy barriers for the reactions of CH3CHOO with 2-methyl glyceric acid (MGA) and to evaluate the interaction of the three functional groups of MGA. The results show that the reactions involving the COOH group of MGA are negligibly affected, and that hydrogen bonding can affect the reactions involving α-OH and ß-OH groups. The water molecule has a negative effect on the reactions of the COOH group. It decreases the energy barriers of reactions involving the α-OH and ß-OH groups as a catalyst. The Born-Oppenheimer molecular dynamic (BOMD) was applied to simulate the reactions of CH3CHOO with MGA at the gas-liquid interface. Water molecule plays the role of proton transfer in the reaction. Gas-phase calculations and gas-liquid interface simulations demonstrate that the reaction of CH3CHOO with the COOH group is the main pathway in the atmosphere. The molecular dynamic (MD) simulations suggest that the reaction products can form clusters in the atmosphere to participate in the formation of particles.


Assuntos
Simulação de Dinâmica Molecular , Água , Aminas , Atmosfera , Prótons
9.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834768

RESUMO

Criegee intermediates (CIs) are important zwitterionic oxidants in the atmosphere, which affect the budget of OH radicals, amines, alcohols, organic/inorganic acids, etc. In this study, quantum chemical calculation and Born-Oppenheimer molecular dynamic (BOMD) simulation were performed to show the reaction mechanisms of C2 CIs with glycolic acid sulfate (GAS) at the gas-phase and gas-liquid interface, respectively. The results indicate that CIs can react with COOH and OSO3H groups of GAS and generate hydroperoxide products. Intramolecular proton transfer reactions occurred in the simulations. Moreover, GAS acts as a proton donor and participates in the hydration of CIs, during which the intramolecular proton transfer also occurs. As GAS widely exists in atmospheric particulate matter, the reaction with GAS is one of the sink pathways of CIs in areas polluted by particulate matter.


Assuntos
Prótons , Sulfatos , Material Particulado , Simulação de Dinâmica Molecular , Aminas
10.
J Environ Sci (China) ; 127: 308-319, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522063

RESUMO

Given the high abundance of water in the atmosphere, the reaction of Criegee intermediates (CIs) with (H2O)2 is considered to be the predominant removal pathway for CIs. However, recent experimental findings reported that the reactions of CIs with organic acids and carbonyls are faster than expected. At the same time, the interface behavior between CIs and carbonyls has not been reported so far. Here, the gas-phase and air-water interface behavior between Criegee intermediates and HCHO were explored by adopting high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations. Quantum chemical calculations evidence that the gas-phase reactions of CIs + HCHO are submerged energy or low energy barriers processes. The rate ratios speculate that the HCHO could be not only a significant tropospheric scavenger of CIs, but also an inhibitor in the oxidizing ability of CIs on SOx in dry and highly polluted areas with abundant HCHO concentration. The reactions of CH2OO with HCHO at the droplet's surface follow a loop structure mechanism to produce i) SOZ (), ii) BHMP (HOCH2OOCH2OH), and iii) HMHP (HOCH2OOH). Considering the harsh reaction conditions between CIs and HCHO at the interface (i.e., the two molecules must be sufficiently close to each other), the hydration of CIs is still their main atmospheric loss pathway. These results could help us get a better interpretation of the underlying CIs-aldehydes chemical processes in the global polluted urban atmospheres.


Assuntos
Atmosfera , Água , Água/química , Atmosfera/química , Aldeídos
11.
Environ Sci Technol ; 56(18): 12945-12954, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36054832

RESUMO

The ozonolysis of alkenes contributes substantially to the formation of secondary organic aerosol (SOA), which are important modulators of air quality and the Earth's climate. Criegee intermediates (CIs) are abundantly formed through this reaction. However, their contributions to aerosol particle chemistry remain highly uncertain. In this work, we present the first application of a novel methodology, using spin traps, which simultaneously quantifies CIs produced from the ozonolysis of volatile organic compounds in the gas and particle phases. Only the smallest CI with one carbon atom was detected in the gas phase of a ß-caryophyllene ozonolysis reaction system. However, multiple particle-bound CIs were observed in ß-caryophyllene SOA. The concentration of the most abundant CI isomer in the particle phase was estimated to constitute ∼0.013% of the SOA mass under atmospherically relevant conditions. We also demonstrate that the lifetime of CIs in highly viscous SOA particles is at least on the order of minutes, substantially greater than their gas-phase lifetime. The confirmation of substantial concentrations of large CIs with elongated lifetimes in SOA raises new questions regarding their influence on the chemical evolution of viscous SOA particles, where CIs may be a previously underestimated source of reactive species.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , Aerossóis/química , Alcenos , Carbono , Ozônio/química , Sesquiterpenos Policíclicos , Compostos Orgânicos Voláteis/química
12.
Environ Sci Technol ; 56(20): 14249-14261, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36178682

RESUMO

High molecular weight dimeric compounds constitute a significant fraction of secondary organic aerosol (SOA) and have profound impacts on the properties and lifecycle of particles in the atmosphere. Although different formation mechanisms involving reactive intermediates and/or closed-shell monomeric species have been proposed for the particle-phase dimers, their relative importance remains in debate. Here, we report unambiguous experimental evidence of the important role of acyl organic peroxy radicals (RO2) and a small but non-negligible contribution from stabilized Criegee intermediates (SCIs) in the formation of particle-phase dimers during ozonolysis of α-pinene, one of the most important precursors for biogenic SOA. Specifically, we find that acyl RO2-involved reactions explain 50-80% of total oxygenated dimer signals (C15-C20, O/C ≥ 0.4) and 20-30% of the total less oxygenated (O/C < 0.4) dimer signals. In particular, they contribute to 70% of C15-C19 dimer ester formation, likely mainly via the decarboxylation of diacyl peroxides arising from acyl RO2 cross-reactions. In comparison, SCIs play a minor role in the formation of C15-C19 dimer esters but react noticeably with the most abundant C9 and C10 carboxylic acids and/or carbonyl products to form C19 and C20 dimeric peroxides, which are prone to particle-phase transformation to form more stable dimers without the peroxide functionality. This work provides a clearer view of the formation pathways of particle-phase dimers from α-pinene oxidation and would help reduce the uncertainties in future atmospheric modeling of the budget, properties, and health and climate impacts of SOA.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis , Monoterpenos Bicíclicos , Ácidos Carboxílicos , Ésteres , Monoterpenos , Peróxidos
13.
Chemosphere ; 303(Pt 3): 135142, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35636604

RESUMO

In this study, we investigated the reaction mechanism and kinetics of ozone with trans-2-pentenal using density functional theory (DFT) and conventional transition state theory (CTST). At 298 K and 1 atm, the gas-phase reaction mechanisms and kinetic parameters were calculated at the level of CCSD(T)/6-311+G(d,p)//M06-2X/6-311+G(d,p). Both CC and CO bond cycloaddition as well as hydrogen abstraction were found. The calculations indicated that the main reaction path is 1,3-dipole cycloaddition reactions of ozone with CC bond with the relatively lower syn-energy-barrier of 3.35 kcal mol-1 to form primary ozonide which decomposed to produce a carbonyl oxide called a Criegee intermediate (CI) and an aldehyde. The subsequent reactions of CIs were analysed in detail. It is found that the reaction pathways of the novelty CIs containing an aldehyde group are extremely similar with general CIs when they react with NO, NO2, SO2, H2O, CH2O and O2. The condensed Fukui function were calculated to identify the active site of the chosen molecules. At 298 K and 1 atm, the reaction rate coefficient was 9.13 × 10-18 cm3 molecule-1 s-1 with atmospheric lifetime of 1.3 days. The calculated rate constant is in general agreement with the available experimental data. The branching ratios indicated that syn-addition pathways are prior to anti-addition. The atmospheric ratios for CIs formation and the bimolecular reaction rate constants for the Criegee intermediates with the variety of partners were calculated. Our theoretical results are of importance in atmospheric chemistry of unsaturated aldehyde oxidation by ozone.


Assuntos
Ozônio , Aldeídos , Cinética , Modelos Teóricos , Ozônio/química
14.
Environ Res ; 212(Pt B): 113232, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35398317

RESUMO

Fatty acids have been proposed to be a potential source of precursors for SOAs, but the autoxidation process was neglected in the oxidation studies. Here, the autoxidation of oleic acid was explored using microdroplet mass spectrometry. Bulk solution, concentration and solvent composition experiments provided direct evidences for that the autoxidation occurred at or near the air-water interface. The kinetic data showed an acceleration at this interface and was comparable to ozonation, indicating that autoxidation is an important pathway for SOAs formation. In addition, intermediates/products were captured and identified using tandem mass spectrometry, spin-trapping and quenched agents. The autoxidation mechanism was divided into addition intermediates (AIs) and Criegee intermediates (CIs) pathways mediated by hydroxyl radicals (OH). The CI chemistry which is ubiquitous in gas phase was observed at the air-water interface, and this leaded to the mass/volume loss of aerosols. Inversely, the AI chemistry caused the increase of mass, density and hygroscopicity of aerosols. AI chemistry was dominated compared to CI chemistry, but varied by concerning aerosol sizes, ultraviolet light (UV) and charge. Moreover, the MS approach of selectively probing the interfacial substances at the scale of sub-seconds opens new opportunities to study heterogeneous chemistry in atmosphere.


Assuntos
Ozônio , Aerossóis/análise , Atmosfera/análise , Ácido Oleico/química , Ozônio/análise , Água
15.
J Environ Sci (China) ; 114: 160-169, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459481

RESUMO

Criegee intermediates (CIs), also known as carbonyl oxide, are reactive intermediates that play an important role in the atmospheric chemistry. Investigation on the structures and reactivity of CIs is of fundamental importance in understanding the underlying mechanism of their atmospheric reactions. In sharp contrast to the intensively studied parent molecule (CH2OO) and the alkyl-substituted derivatives, the knowledge about the fluorinated analogue CF3C(H)OO is scarce. By carefully heating the triplet carbene CF3CH in an O2-doped Ar-matrix to 35 K, the elusive carbonyl oxide CF3C(H)OO in syn- and anti-conformations has been generated and characterized with infrared (IR) and ultraviolet-visible (UV-vis) spectroscopy. The spectroscopic identification is supported by 18O-labeling experiments and quantum chemical calculations at the B3LYP/6-311++G(3df,3pd) and MP2/6-311++G(2d,2p) levels. Upon the long-wavelength irradiation (λ > 680 nm), both conformers of CF3C(H)OO decompose to give trifluoroacetaldehyde CF3C(H)O and simultaneously rearrange to the isomeric dioxirane, cyclic-CF3CH(OO), which undergoes isomerization to the lowest-energy carboxylic acid CF3C(O)OH upon UV-light excitation at 365 nm. The O2-oxidation of CF3CH via the intermediacy of CF3C(H)OO and cyclic-CF3CH(OO) might provide new insight into the mechanism for the degradation of hydro-chlorofluorocarbon CF3CHCl2 (HCFC-123) in the atmosphere.


Assuntos
Atmosfera , Óxidos , Óxidos/química , Fotoquímica , Análise Espectral , Raios Ultravioleta
16.
Environ Sci Technol ; 55(19): 12893-12901, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34525797

RESUMO

We report the results of a mass spectrometric study of the effects of atmospherically relevant metal ions on the decomposition of α-hydroxyalkyl-hydroperoxides (α-HHs) derived from ozonolysis of α-terpineol in aqueous solutions. By direct mass spectrometric detection of chloride adducts of α-HHs, we assessed the temporal profiles of α-HHs and other products in the presence of metal ions. In addition, reactions between α-HHs and FeCl2 in the presence of excess DMSO showed that the amount of hydroxyl radicals formed in a mixture of α-terpineol, O3, and FeCl2 was 5.7 ± 0.8% of the amount formed in a mixture of H2O2 and FeCl2. The first-order rate constants for the decay of α-HHs produced by ozonolysis of α-terpineol in the presence of 5 mM acetate buffer at a pH of 5.1 ± 0.1 were determined to be (4.5 ± 0.1) × 10-4 s-1 (no metal ions), (4.7 ± 0.2) × 10-4 s-1 (with 0.05 mM Fe2+), (4.7 ± 0.1) × 10-4 s-1 (with 0.05 mM Zn2+), and (4.8 ± 0.2) × 10-4 s-1 (with 0.05 mM Cu2+). We propose that in acidic aqueous media, the reaction of α-HHs with Fe2+ is outcompeted by H+-catalyzed decomposition of α-HHs, which produces the corresponding aldehydes and H2O2, which can in turn react with Fe2+ to form hydroxyl radicals.


Assuntos
Álcoois , Peróxido de Hidrogênio , Radical Hidroxila , Terpenos , Água
17.
J Environ Sci (China) ; 105: 128-137, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130830

RESUMO

The reaction mechanism and kinetics of the simplest Criegee intermediate CH2OO reaction with hydroperoxymethyl formate (HPMF) was investigated at high-level quantum chemistry calculations. HPMF has two reactive functional groups, -C(O)OH and -OOH. The calculated results of thermodynamic data and rate constants indicated that the insertion reactions of CH2OO with -OOH group of HPMF were more favorable than the reactions of CH2OO with -C(O)OH group. The calculated overall rate constant was 2.33 × 10-13 cm3/(molecule⋅sec) at 298 K and the rate constants decreased as the temperature increased from 200 to 480 K. In addition, we also proved the polymerization reaction mechanism between CH2OO and -OOH of HPMF. This theoretical study interpreted the previous experimental results, and supplied the structures of the intermediate products that couldn't be detected during the experiment.


Assuntos
Formiatos , Teoria Quântica , Cinética , Temperatura , Termodinâmica
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 260: 119945, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020382

RESUMO

The reaction system between the simplest Criegee intermediate, CH2OO, and the greenhouse gas CO2 has been investigated by Fourier transform microwave spectroscopy. The CH2OO-CO2 weakly bound complex was identified in the rotational spectrum, where inversion doublets due to the tunnelling motion between two equivalent configurations of the complex, with CO2 located at one side or the other side of the CH2OO plane, were observed. Using a two-state torsion-rotation Hamiltonian, a complete set of rotational and centrifugal distortion constants for both tunneling states were derived. In addition, the torsional energy difference between both states could be accurately determined, being 23.9687 MHz. The non-observation of the cycloaddition reaction product is in agreement with our ab initio calculations and with previous results that concluded that the reactivity of CIs toward CO2 is measured to be quite limited.

19.
Angew Chem Int Ed Engl ; 60(28): 15138-15152, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283439

RESUMO

After more than 70 years since their discovery, Criegee intermediates (CIs) are back at the forefront of modern chemistry of short-lived reactive intermediates. They play an important role in the mechanistic context of chemical synthesis, total synthesis, pharmaceuticals, and, most importantly, climate-controlling aerosol formation as well as atmospheric chemistry. This Minireview summarizes key aspects of CIs (from the mechanism of formation, for example, by ozonolysis of alkenes and photolysis methods employing diiodo and diazo compounds, to their electronic structures and chemical reactivity), highlights the most recent findings and some landmark results of gas-phase kinetics, and detection/measurements. The recent progress in synthetic and mechanistic studies in the chemistry of CIs provides a guide to illustrate the possibilities for further investigations in this exciting field.

20.
Chemphyschem ; 21(18): 2056-2059, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32755027

RESUMO

We report a type of highly efficient double hydrogen atom transfer (DHAT) reaction. The reactivities of 3-aminopropanol and 2-aminoethanol towards Criegee intermediates (syn- and anti-CH3 CHOO) were found to be much higher than those of n-propanol and propylamine. Quantum chemistry calculation has confirmed that the main mechanism of these very rapid reactions is DHAT, in which the nucleophilic attack of the NH2 group is catalyzed by the OH group which acts as a bridge of HAT. Typical gas-phase DHAT reactions are termolecular reactions involving two hydrogen bonding molecules; these reactions are typically slow due to the substantial entropy reduction of bringing three molecules together. Putting the reactive and catalytic groups in one molecule circumvents the problem of entropy reduction and allows us to observe the DHAT reactions even at low reactant concentrations. This idea can be applied to improve theoretical predictions for atmospherically relevant DHAT reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA