RESUMO
Investigating the conspicuousness of animal color patterns to different observers is crucial for understanding their function. This study examines the peculiar case of a jumping spider (Saitis barbipes) whose males display red and black ornaments during courtship despite an apparent inability to distinguish these colors. We propose that, through predator eyes, red may actually be a better match than black to the spiders' leaf litter background, and that the black fringe of hairs surrounding red ornaments may blur with red at natural predator acuities and viewing distances to produce a background-matching desaturated red. In a field experiment, we test whether red ornaments reduce predation relative to red ornaments painted black, and find that, unexpectedly, spiders with red ornaments are more heavily predated upon. Having established birds as the spiders' primary predators, we image the spiders in their natural habitat using an avian-vision camera. We find their red coloration to have similar color contrast, but lower achromatic contrast, with the background than black coloration. We also find that red and black elements blur together at typical avian acuities and viewing distances to produce lower chromatic and achromatic contrasts with the background than would be seen by animals with higher acuities and/or closer viewing distances. Interestingly, red ornaments appear orange or yellow when viewed obliquely, which reduces their achromatic, but not chromatic, contrast with the background. Our imaging results provide support for our hypothesis that red is camouflaging, whereas the results of our predation experiment do not. Any functional significance of the spiders' red coloration therefore remains unresolved.
Assuntos
Cor , Comportamento Predatório , Aranhas , Animais , Aranhas/fisiologia , Masculino , Comportamento Predatório/fisiologia , Mimetismo Biológico/fisiologia , Pigmentação/fisiologia , Aves/fisiologia , FemininoRESUMO
AbstractIntraspecific variation in camouflage is common in animals. Sexual dimorphism in camouflage is less common and, where observed, attributed to trade-offs between natural selection for predator avoidance and sexual selection for conspicuous mating signals. Here we report on variation in putatively cryptic ventral hindwing patterns in the American snout butterfly, Libytheana carinenta. We use field surveys and crowdsourced data to characterize three morphs. One is found in both sexes, one is male specific, and one is female specific. The sex-specific morphs constitute a sexually dimorphic set whose frequencies change together in time. Field surveys indicate that butterflies in southern Arizona transition from midsummer dominance of the sexually monomorphic pattern to early-fall dominance of the sexually dimorphic set. Crowdsourced data indicate that the sexually dimorphic set dominates in early spring, transitioning later into a mixture of morphs dominated by the monomorphic pattern, with the dimorphic set rising in frequency again in late fall. We discuss this unique pattern of camouflage variation with respect to contemporary theory on animal coloration.
Assuntos
Borboletas , Pigmentação , Estações do Ano , Asas de Animais , Animais , Borboletas/anatomia & histologia , Borboletas/fisiologia , Asas de Animais/anatomia & histologia , Masculino , Feminino , Arizona , Caracteres Sexuais , Mimetismo BiológicoRESUMO
The selective factors that shape phenotypic diversity in prey communities with aposematic animals are diverse and coincide with similar diversity in the strength of underlying secondary defences. However, quantitative assessments of colour pattern variation and the strength of chemical defences in assemblages of aposematic species are lacking. We quantified colour pattern diversity using quantitative colour pattern analysis (QCPA) in 13 dorid nudibranch species (Infraorder: Doridoidei) that varied in the strength of their chemical defences. We accounted for the physiological properties of a potential predator's visual system (a triggerfish, Rhinecanthus aculeatus) and modelled the appearance of nudibranchs from multiple viewing distances (2 and 10 cm). We identified distinct colour pattern properties associated with the presence and strength of chemical defences. Specifically, increases in chemical defences indicated increases in colour pattern boldness (i.e. visual contrast elicited via either or potentially coinciding chromatic, achromatic and/or spatial contrast). Colour patterns were also less variable among species with chemical defences when compared to undefended species. Our results indicate correlations between secondary defences and diverse, bold colouration while showing that chemical defences coincide with decreased colour pattern variability among species. Our study suggests that complex spatiochromatic properties of colour patterns perceived by potential predators can be used to make inferences on the presence and strength of chemical defences.
Assuntos
Cor , Gastrópodes , Comportamento Predatório , Animais , Gastrópodes/fisiologia , Pigmentação , Mimetismo BiológicoRESUMO
Conspicuous colours have fascinated biologists for centuries, leading to research on the evolution and functional significance of colour traits. In many cases, research suggests that conspicuous colours are adaptive and serve a function in sexual or aposematic signalling. In other cases, a lack of evidence for the adaptive value of conspicuous colours garners interest from biologists, such as when organisms that live underground and are rarely exposed to the surface are nevertheless colourful. Here, we use phylogenetic comparative methods to investigate colour evolution throughout freshwater crayfishes that vary in burrowing ability. Within the taxa we analysed, conspicuous colours have evolved independently over 50 times, and these colours are more common in semi-terrestrial crayfishes that construct extensive burrows. The intuitive but not evolutionarily justified assumption when presented with these results is to assume that these colours are adaptive. But contrary to this intuition, we discuss the hypothesis that colouration in crayfish is neutral. Supporting these ideas, the small population sizes and reduced gene flow within semi-terrestrial burrowing crayfishes may lead to the fixation of colour-phenotype mutations. Overall, our work brings into question the traditional view of animal colouration as a perfectly adapted phenotype.
Assuntos
Astacoidea , Evolução Biológica , Pigmentação , Animais , Astacoidea/fisiologia , Astacoidea/genética , Cor , Filogenia , FenótipoRESUMO
Animal camouflage serves a dual purpose in that it enhances both predation efficiency and anti-predation strategies, such as background matching, disruptive coloration, countershading, and masquerade, for predators and prey, respectively. Although body size and shape determine the appearance of animals, potentially affecting their camouflage effectiveness, research over the past two centuries has primarily focused on animal coloration. Over the past two decades, attention has gradually shifted to the impact of body size and shape on camouflage. In this review, we discuss the impact of animal body size and shape on camouflage and identify research issues and challenges. A negative correlation between background matching effectiveness and an animal's body size has been reported, whereas flatter body shapes enhance background matching. The effectiveness of disruptive coloration is also negatively correlated with body size, whereas irregular body shapes physically disrupt the body outline, reducing the visibility of true edges and making it challenging for predators to identify prey. Countershading is most likely in larger mammals with smaller individuals, whereas body size is unrelated to countershading in small-bodied taxa. Body shape influences a body reflectance, affecting the form of countershading coloration exhibited by animals. Animals employing masquerade achieve camouflage by resembling inanimate objects in their habitats in terms of body size and shape. Empirical and theoretical research has found that body size affects camouflage strategies by determining key aspects of an animal's appearance and predation risk and that body shape plays a role in the form and effectiveness of camouflage coloration. However, the mechanisms underlying these adaptations remain elusive, and a relative dearth of research on other camouflage strategies. We underscore the necessity for additional research to investigate the interplay between animal morphology and camouflage strategies and their coevolutionary development, and we recommend directions for future research.
RESUMO
Camouflage and warning signals are different antipredator strategies, which offer an excellent opportunity to study the evolutionary forces acting on prey appearance. Edible prey often escape detection via camouflage, which usually leads to apostatic selection favoring rare morphs. By contrast, defended prey often display conspicuous coloration acting as warning signals to predators, which usually leads to positive frequency dependence and signal uniformity. However, when two morphs of the same species vary greatly in conspicuousness, the maintenance of both cryptic and conspicuous forms in profitable prey populations remains enigmatic. Using the white and melanic morphs of the invasive box tree moth (Cydalima perspectalis) presented at three different frequencies, we investigate (a) the palatability of caterpillars and adult moths to birds, (b) predation rates on the less conspicuous melanic morph, and (c) the role of frequency dependence in balancing morph frequencies. Our results show that caterpillars are distasteful for birds but not adult moths that are fully palatable. We found that the less conspicuous, melanic morph, benefits from reduced predation due to its lower detectability. The more conspicuous, white morph, instead, is more predated and is best off when common, suggesting positive frequency dependence. These results offer new insights into the evolution of color polymorphism and prey defenses in a polymorphic moth species. Further investigation is required to understand the role of different predation regimes on the maintenance of the polymorphism in this species and test whether additional selection pressures operate in natural populations.
RESUMO
The persistence of non-neutral trait polymorphism is enigmatic because stabilizing selection is expected to deplete variation. In cryptically coloured prey, negative frequency-dependent selection due to search image formation by predators has been proposed to favour rare variants, promoting polymorphism. However, in a heterogeneous environment, locally varying disruptive selection favours patch type-specific optima, resulting in spatial segregation of colour variants. Here, we address whether negative frequency-dependent selection can overcome selection posed by habitat heterogeneity to promote local polymorphism using an individual-based model. In addition, we compare how prey and predator mobility may modify the outcome. Our model revealed that frequency-dependent predation could strongly promote local prey polymorphism, but only when differences between morphs in patch-specific fitness were small. The effect of frequency-dependent predation depended on the predator adjustment of search image and was hampered by the prey population structure. Gene flow due to prey movement counteracted local selection, promoted local polymorphism to some extent, and relaxed the conditions for polymorphism due to frequency-dependent predation. Importantly, abrupt spatial changes in morph frequencies decreased the probability that mobile frequency-dependent predators could maintain local prey polymorphism. Overall, our study suggests that in a spatially heterogeneous environment, negative frequency-dependent selection may help maintain local polymorphism but only under a limited range of conditions.
Assuntos
Fluxo Gênico , Polimorfismo Genético , Animais , Cor , Fenótipo , Comportamento PredatórioRESUMO
Egg recognition and rejection are the most common and effective anti-parasitic strategies against avian brood parasitism in terms of maintaining stability over time and plasticity in response to environmental cues. Conversely, parasites have evolved multiple counter-adaptations to the anti-parasitic defenses of hosts. Among them, the crypsis hypothesis suggests that eggs that appear more cryptic in color and are closely matched to the environment are helping to counter the egg recognition strategy of the host. In this study, we investigated whether the egg recognition ability of Oriental reed warblers (Acrocephalus orientalis), a common host of common cuckoos (Cuculus canorus), changed during different reproductive stages by using model egg experiments. The effect of the crypsis hypothesis on the egg recognition ability of the hosts was also investigated by controlling the color contrast between the inside of the experimental nests and the model eggs. The results showed that the Oriental reed warbler retained strong egg recognition abilities, which were similar to the incubation stage (GLMMs: F 1,27 = 0.424, p = .521), even after entering the nestling stage and preferentially rejected model eggs with distinct contrasting colors (binomial test: Fisher's exact, p = .016). These results are consistent with the crypsis hypothesis. The present study suggests that the host retains a strong egg recognition ability even during the nestling stage and that cryptic-colored eggs that are closely matched with the breeding nest environment help counter the host's egg recognition abilities and increase the chances of successful parasitism by cuckoos. However, the effectiveness of cryptic egg may be weaker than mimic egg in countering egg recognition and rejection by hosts with open-cup nests.
RESUMO
Interactions of solar radiation with mammal fur are complex. Reflection of radiation in the visible spectrum provides colour that has various roles, including sexual display and crypsis, i.e., camouflage. Radiation that is absorbed by a fur coat is converted to heat, a proportion of which impacts on the skin. Not all absorption occurs at the coat surface, and some radiation penetrates the coat before being absorbed, particularly in lighter coats. In studies on this phenomenon in kangaroos, we found that two arid zone species with the thinnest coats had similar effective heat load, despite markedly different solar reflectances. These kangaroos were Red Kangaroos (Osphranter rufus) and Western Grey Kangaroos (Macropus fuliginosus).Here we examine the connections between heat flow patterns associated with solar radiation, and the physical structure of these coats. Also noted are the impacts of changing wind speed. The modulation of solar radiation and resultant heat flows in these coats were measured at wind speeds from 1 to 10 m s-1 by mounting them on a heat flux transducer/temperature-controlled plate apparatus in a wind tunnel. A lamp with a spectrum like solar radiation was used as a proxy for the sun. The integrated reflectance across the solar spectrum was higher in the red kangaroos (40 ± 2%) than in the grey kangaroos (28 ± 1%). Fur depth and insulation were not different between the two species, but differences occurred in fibre structure, notably in fibre length, fibre density and fibre shape. Patterns of heat flux within the species' coats occurred despite no overall difference in effective solar heat load. We consider that an overarching need for crypsis, particularly for the more open desert-adapted red kangaroo, has led to the complex adaptations that retard the penetrance of solar radiation into its more reflective fur.
Assuntos
Temperatura Alta , Macropodidae , Animais , Macropodidae/fisiologia , Cor , Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologiaRESUMO
We conducted a study on interpopulation variation of colour patterns in two congeneric chameleon species, which have an analogous life history. Both species are able to rapidly change colour pattern, and their context-dependent colour patterns often vary across a wide geographical range. Specifically, we tested four hypotheses that can explain the observed interpopulation variation of colour patterns by a series of behavioural field trials where the colour patterns of individuals were recorded and later analysed by a deep neural network algorithm. We used redundancy analysis to relate genetic, spectral and behavioural predictors to interpopulation colour pattern distance. Our results showed that both isolation by distance (IBD) and alternative mating tactics were significant predictors for interpopulation colour pattern variation in Chamaeleo chamaeleon males. By contrast, in Chamaeleo dilepis, the interpopulation colour pattern variation was largely explained by IBD, and evidence for alternative mating tactics was absent. In both chameleon species, the environmental colours showed no evidence of influencing chameleon interpopulation colour pattern variation, regardless of sex or behavioural context. This contrasting finding suggests that interpopulation context-dependent colour pattern variations in each species are maintained under a different set of selective pressures or circumstances.
RESUMO
Motion is a crucial part of the natural world, yet our understanding of how animals avoid predation whilst moving remains rather limited. Although several theories have been proposed for how antipredator defence may be facilitated during motion, there is often a lack of supporting empirical evidence, or conflicting findings. Furthermore, many studies have shown that motion often 'breaks' camouflage, as sudden movement can be detected even before an individual is recognised. Whilst some static camouflage strategies may conceal moving animals to a certain extent, more emphasis should be given to other modes of camouflage and related defences in the context of motion (e.g. flicker fusion camouflage, active motion camouflage, motion dazzle, and protean motion). Furthermore, when motion is involved, defence strategies are not necessarily limited to concealment. An animal can also rely on motion to mislead predators with regards to its trajectory, location, size, colour pattern, or even identity. In this review, we discuss the various underlying antipredator strategies and the mechanisms through which they may be linked to motion, conceptualising existing empirical and theoretical studies from two perspectives - concealing and misleading effects. We also highlight gaps in our understanding of these antipredator strategies, and suggest possible methodologies for experimental designs/test subjects (i.e. prey and/or predators) and future research directions.
Assuntos
Comportamento Predatório , Animais , Comportamento Predatório/fisiologia , Movimento (Física) , Mimetismo Biológico/fisiologia , Movimento/fisiologiaRESUMO
Colour change is used by a wide range of animals. It is used for intra- and interspecific communication and crypsis, and can occur on morphological and physiological levels. Bony fish employ rapid physiological colour change and display various types of patterns and colouration (colour phases) useful for aposematic and cryptic purposes. Using an existing database of benthic stereo-baited remote underwater video systems from two locations in Western Australia, we tested whether the frequency of colour phases of emperors, Lethrinidae, varied by species. We described colour phases and rapid physiological colour change in 16 species of lethrinids, and related occurrences of colour change to feeding activity and life stages. Dark and light colour phases were observed in nine of the 16 evaluated species of which seven also displayed physiological colour change. Frequency of colour phases varied between species, suggesting that the display of different dark patterns may be especially important for certain species. Both juveniles and adults showed the ability to change between different colour patterns. The change into a mottled pattern mainly occurred while feeding or when approaching to feed, suggesting that it may be triggered by feeding and the associated decrease in environmental awareness. Colour change is a commonly observed strategy in lethrinids and may have evolved as an adaptation for increased foraging success or to reduce aggression from conspecifics. Physiological colour change allows lethrinids to quickly adapt to various cues from the environment and can therefore be considered a versatile physiological mechanism in this family.
RESUMO
To assess skin color change in alligators, we maintained animals in differently lighted environments and also measured skin colors in an ontogenetic series of wild animals. Juvenile alligators maintained in black enclosures exhibited a gradual lightening of skin color when shifted to white enclosures, and these observed changes were reversible. A histological examination of the skins of alligators maintained in dark tanks showed that the dermis exhibited a dense layer of pigmented cells, while samples from the same animals in light environments exhibited a more diffuse pigmented layer. As alligators grow, they exhibit an ontogenetic loss of stripes that may aid in crypsis and predation. Hatchlings have intense black and yellow vertical stripes that darken with age; adults are a more homogenous black/gray color. Since alligators live in temperate climates and adults have lower surface area/volume ratios, which can be detrimental for the absorption of radiant energy, the darker color of larger animals may also aid in thermoregulation. Alligators at the northern end of their range, with colder climates, exhibited darker skin tones, and the ontogenetic extinction of stripes occurred at a more accelerated rate compared to animals in southern, warmer regions, supporting the idea that latitude-dependent ontogenetic color shift has a role in thermoregulation.
RESUMO
BACKGROUND: Animals select and interact with their environment in various ways, including to ensure their physiology is at its optimal capacity, access to prey is possible, and predators can be avoided. Often conflicting, the balance of choices made may vary depending on an individual's life-history and condition. The common lizard (Zootoca vivipara) has egg-laying and live-bearing lineages and displays a variety of dorsal patterns and colouration. How colouration and reproductive mode affect habitat selection decisions on the landscape is not known. In this study, we first tested if co-occurring male and female viviparous and oviparous common lizards differ in their microhabitat selection. Second, we tested if the dorsal colouration of an individual lizard matched its basking site choice within the microhabitat where it was encountered, which could be related to camouflage and crypsis. RESULTS: We found that site use differed from the habitat otherwise available, suggesting lizards actively choose the composition and structure of their microhabitat. Females were found in areas with more wood and less bare ground compared to males; we speculate that this may be for better camouflage and reducing predation risk during pregnancy, when females are less mobile. Microhabitat use also differed by parity mode: viviparous lizards were found in areas with more density of flowering plants, while oviparous lizards were found in areas that were wetter and had more moss. This may relate to differing habitat preferences of viviparous vs. oviparous for clutch lay sites. We found that an individual's dorsal colouration matched that of the substrate of its basking site. This could indicate that individuals may choose their basking site to optimise camouflage within microhabitat. Further, all individuals were found basking in areas close to cover, which we expect could be used to escape predation. CONCLUSIONS: Our study suggests that common lizards may actively choose their microhabitat and basking site, balancing physiological requirements, escape response and camouflage as a tactic for predator avoidance. This varies for parity modes, sexes, and dorsal colourations, suggesting that individual optimisation strategies are influenced by inter-individual variation within populations as well as determined by evolutionary differences associated with life history.
Assuntos
Lagartos , Reprodução , Animais , Feminino , Masculino , Evolução Biológica , Ecossistema , PigmentaçãoRESUMO
Disruptive markings are common in animal patterns and can provide camouflage benefits by concealing the body's true edges and/or by breaking the surface of the body into multiple depth planes. Disruptive patterns that are accentuated by high contrast borders are most likely to provide false depth cues to enhance camouflage, but studies to date have used visual detection models or humans as predators. We presented three-dimensional-printed moth-like targets to wild bird predators to determine whether: (1) three-dimensional prey with disrupted body surfaces have higher survival than three-dimensional prey with continuous surfaces, (2) two-dimensional prey with disruptive patterns or enhanced edge markings have higher survival than non-patterned two-dimensional prey. We found a survival benefit for three-dimensional prey with disrupted surfaces, and a significant effect of mean wing luminance. There was no evidence that false depth cues provided the same protective benefits as physical surface disruption in three-dimensional prey, perhaps because our treatments did not mimic the complexity of patterns found in natural animal markings. Our findings indicate that disruption of surface continuity is an important strategy for concealing a three-dimensional body shape.
Assuntos
Mariposas , Pigmentação , Humanos , Animais , Comportamento Predatório , Aves , Sinais (Psicologia)RESUMO
Time from birth or hatching to the first shed (postnatal ecdysis) in snakes ranges from about an hour to several weeks depending upon the species. We assessed patterns in time to postnatal ecdysis in 102 snake species for which we could source appropriate information, covering 2.6% of all extant snake species, and related measures to various biological traits. Reconstruction revealed ancestral time to postnatal ecdysis to be 11 days. Since time to postnatal ecdysis can be shorter or longer than the ancestral state, we argue that there are several competing drivers for time to postnatal ecdysis. A reduced time to postnatal ecdysis has evolved in several lineages, commonly in ambush-foraging, viviparous vipers, while extended time to postnatal ecdysis is associated with oviparous species with maternal care. Of central importance is the impact of postnatal ecdysis on the scent levels of neonates, resulting in a reduction of time to postnatal ecdysis in chemically cryptic species, while the pivotal role of scent in mother-neonate recognition has resulted in the retention or extension of time to postnatal ecdysis. We showed that postnatal ecdysis improves chemical crypsis. The patterns revealed in this study suggest that measures of time to postnatal ecdysis can provide insights into the biology of snakes and be used as an indicator of certain life history traits.
RESUMO
Camouflage is a common trait enabling animals to avoid detection by predators and prey. Patterns such as spots and stripes are convergent across carnivore families, including felids, and are hypothesized to have adaptive value through camouflage. House cats (Felis catus) were domesticated thousands of years ago, but despite artificial selection for a wide variety of coat colors, the wild-type pattern of tabby cats is very common. We aimed to determine whether this pattern grants an advantage over other morphs in natural environments. We collected cat images taken with camera traps in natural areas near and far from 38 rural settlements in Israel, to compare the habitat use by feral cats of different colors. We tested the effect of proximity to villages and habitat vegetation (normalized difference vegetation index, NDVI) on the probability of space use by the tabby morph compared to the others. NDVI had a positive effect on site use in both morphs, but non-tabby cats had a 2.1 higher probability of using the near sites than the far sites, independent of NDVI. The wild-type tabby cats' probability of site use were equally likely to be unaffected by proximity, or have an interaction of proximity with NDVI whereby the far transects are used with increasing probability in sites of denser vegetation. We hypothesize that the camouflage of tabby cats, more than other colors and patterns, confers an advantage in roaming the woodland habitats for which this pattern evolved. This has both theoretical implications as rare empirical evidence of the adaptive value of fur coloration, and practical implications on managing the ecological impact of feral cats worldwide.
RESUMO
Aposematic signals visually advertise underlying anti-predatory defences in many species. They should be detectable (e.g. contrasting against the background) and bold (e.g. using internal pattern contrast) to enhance predator recognition, learning and memorization. However, the signalling function of aposematic colour patterns may be distance-dependent: signals may be undetectable from a distance to reduce increased attacks from naïve predators but bold when viewed up close. Using quantitative colour pattern analysis, we quantified the chromatic and achromatic detectability and boldness of colour patterns in 13 nudibranch species with variable strength of chemical defences in terms of unpalatability and toxicity, approximating the visual perception of a triggerfish (Rhinecanthus aculeatus) across a predation sequence (detection to subjugation). When viewed from an ecologically relevant distance of 30 cm, there were no differences in detectability and boldness between well-defended and undefended species. However, when viewed at closer distances (less than 30 cm), well-defended species were more detectable and bolder than undefended species. As distance increased, detectability decreased more significantly than boldness for defended species. For undefended species, boldness and detectability remained comparatively consistent, regardless of viewing distance. We provide evidence for distance-dependent signalling in aposematic nudibranchs and highlight the importance of distinguishing signal detectability from boldness in studies of aposematism.
Assuntos
Evolução Biológica , Gastrópodes , Animais , Percepção Visual , Aprendizagem , Comportamento PredatórioRESUMO
There is increasing evidence that evolutionary and ecological processes can operate on the same timescale1,2 (i.e., contemporary time). As such, evolution can be sufficiently rapid to affect ecological processes such as predation or competition. Thus, evolution can influence population, community, and ecosystem-level dynamics. Indeed, studies have now shown that evolutionary dynamics can alter community structure3,4,5,6 and ecosystem function.7,8,9,10 In turn, shifts in ecological dynamics driven by evolution might feed back to affect the evolutionary trajectory of individual species.11 This feedback loop, where evolutionary and ecological changes reciprocally affect one another, is a central tenet of eco-evolutionary dynamics.1,12 However, most work on such dynamics in natural populations has focused on one-way causal associations between ecology and evolution.13 Hence, direct empirical evidence for eco-evolutionary feedback is rare and limited to laboratory or mesocosm experiments.13,14,15,16 Here, we show in the wild that eco-evolutionary dynamics in a plant-feeding arthropod community involve a negative feedback loop. Specifically, adaptation in cryptic coloration in a stick-insect species mediates bird predation, with local maladaptation increasing predation. In turn, the abundance of arthropods is reduced by predation. Here, we experimentally manipulate arthropod abundance to show that these changes at the community level feed back to affect the stick-insect evolution. Specifically, low-arthropod abundance increases the strength of selection on crypsis, increasing local adaptation of stick insects in a negative feedback loop. Our results suggest that eco-evolutionary feedbacks are able to stabilize complex systems by preventing consistent directional change and therefore increasing resilience.
Assuntos
Evolução Biológica , Ecossistema , Animais , Retroalimentação , Insetos , Adaptação Fisiológica , Dinâmica PopulacionalRESUMO
Prey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood. Here, we use a comparative approach to investigate how pattern use varies across a phylogeny of 268 species of cryptic and aposematic butterfly larvae, which also vary in social behaviour. We find that longitudinal stripes are used more frequently by cryptic larvae, and that patterns putatively linked to crypsis are more likely to be used by solitary larvae. By contrast, aposematic larvae are more likely to use horizontal bands and spots, but we find no differences in the use of individual pattern elements between solitary and gregarious aposematic species. However, solitary aposematic larvae are more likely to display multiple pattern elements, whereas those with no pattern are more likely to be gregarious. Our study advances our understanding of how pattern variation, coloration and social behaviour covary across lepidopteran larvae, and highlights new questions about how patterning affects larval detectability and predator responses to aposematic prey.