Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298968

RESUMO

Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites' potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.


Assuntos
Franquincenso , Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Humanos , Cobre/química , Nanotubos de Carbono/química , Poluentes Químicos da Água/química , Cinética , Adsorção , Nanopartículas Magnéticas de Óxido de Ferro , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
2.
Ecotoxicol Environ Saf ; 185: 109695, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31577992

RESUMO

Operation of recession and inundation in Three Gorges Reservoir (TGR) revealed a potential contribution to the migration of heavy metals in soil and fluvial systems, thus led to negative ecological impacts. The work herein investigated the concentration and speciation of three typical heavy metals (Cd, Cr and Cu) in a water-level-fluctuation zone of TGR, as well as simulated the adsorption and desorption behavior of heavy metals on soils, which aimed at elucidating the fate of heavy metals in this special area. Field investigation revealed that water level fluctuation greatly enabled the migration of heavy metals to inner or upper soil layers. Laboratory experiments showed that adsorption of Cd(II) was a chemical process and dissolved organic matters (DOM) in soils strengthened the combination of Cd(II) to soil surface which inhibited the desorption process. Cr(VI) was physically adsorbed and readily to be desorbed. DOM enabled deposition of Cr(VI) in soils. Cation exchange was dominate mechanism in Cu(II) adsorption process, whereas DOM presented positive effects on desorption of Cu(II). The results presented in this study would provide basic theory for scientific research in TGR.


Assuntos
Substâncias Húmicas/análise , Metais Pesados/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Recursos Hídricos , Adsorção , Cátions , China , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA