RESUMO
The sensor with electron donor phenothiazine-2-carbaldehyde and electron acceptor indolium carboxylic acid, is developed with an intramolecular charge transfer transition between them. The synthesized molecule senses cyanide ion in water. The cyanide ion reacts with the molecule via nucleophilic addition in the indolium ring with a noticeable purple to colorless change in the solution observed. Also with the cyanide ion interaction, the sensor exhibits change in UV-visible absorption and fluorescence spectra. While the other ion does not show spectral and visual changes when interacts with the sensor molecule. Also the interference study reveals that the molecule is highly selective towards cyanide ion. Different source of water samples confirms the CN- ion sensing efficiency of the molecule. 1:1 interaction between the molecule PTI and cyanide ion is confirmed from the results of Jobs plot, 1H NMR and HRMS. Paper strips were prepared and this can act as a simple tool to sense cyanide ion in various water samples.
RESUMO
New chiral (S,E)-γ-N,N-dibenzylated nitroalkenes 2a-c were synthesized from natural L-(α)-amino acids in five steps with overall yields of 68-88%. The conjugate addition of hydride, methoxide, nitronate and azide nucleophiles to 2a-c led to the corresponding chiral 1,3-nitroamines in 74-90% yield. The conjugate addition of cyanide anion to 2a,b was followed by HNO2 elimination affording chiral aminated acrylonitriles (73-98%). On the other hand, the azide anion reacted with 2a, in acetonitrile, via a [3 + 2]-cycloaddition in which HNO2 was lost, providing the corresponding 1,2,3-triazole derivative. Direct reduction of 1,3-nitroamine derivatives 9a,b produced the corresponding 1,3-diamines in good yields.