Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124982, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39173318

RESUMO

Imine based positional isomers (8E)-N-(4-((E)-(perfluorophenylimino)methyl)benzylidene)-2,3,4,5,6-pentafluorobenzenamine, L and (10E)-N-(3-(E-Perfluorophenylimino)methyl)benzylidene)-2,3,4,5,6-pentafluorobenzenamine, L1 have been designed, and synthesized by functionalizing two electron deficient aromatic moieties at the para-para'/ortho-ortho' positions in the phenyl core of the L and L1 respectively. The responses of L and L1 towards various anionic species are examined. The positional isomers L and L1 differs not only by showing distinguishable color change upon addition of anions but also differentiates themselves by the way of self-assembling together upon binding with cyanide anion. The naked-eye colorimetric experiments, UV-Vis, Nuclear Magnetic Resonance, and Infra-Red spectroscopic analyses reveal that the isomer L binds fluoride anion through 2:1 stoichiometry ratio. Unlike fluoride complex, the isomer L form aggregates while binding with cyanide ion. On the other hand, isomer L1 does not show any instant color change upon additions of any anion. Interestingly, after thirty minutes, only the color of the cyanide complex is turned into dark brown. While analyzing the spectroscopic results of cyanide complex of L1, it is found that the cyanide complex begins to decompose and finally it is completely decomposed within 30 min. This unprecedented phenomenon about the colorimetric sensing of cyanide and destruction of cyanide complex with respect to time has not been reported in the literature yet. To the best of our knowledge this is the first example of study of sensing controlling the selectivity, mode of binding, self-aggregating and degradation properties of anionic complexes under the influence of positional isomeric effects. This present investigation provides simple and effective strategy to construct the sensor molecules with tunable binding properties in terms of easy to prepare as well as easy to use as a colorimetric sensor. _____________________________________________________________________________________________________.

2.
Talanta ; 277: 126241, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38820826

RESUMO

A new chemosensory based on deprotonation and intramolecular charge transfer (ICT) was developed to detect cyanide in food samples. Deprotonation was facilitated by increasing the acidity of the NH proton in the dibenzosuberenone-based dihydropyridazine chemosensor Pz3 with -CN substituents. Addition of cyanide to acetonitrile and aqueous acetonitrile solution (1/9) of Pz3 resulted in their significant color change from colorless to purple in visible light, accompanied by a strong red shift in the absorption spectrum. Meanwhile, the near-infrared (NIR) emission (ex. 525 nm, em. 670 nm) of Pz3- resulting from deprotonation showed fluorescence switching behavior to detect the cyanide anion. While the acidic NH protons interact with basic anions as F-, CN-, OAc- and H2PO4- in organic solution (MeCN), just CN ions interact with in aqueous organic solutions (H2O-MeCN 1/9 HEPES pH 7.4). The limit of detection of cyanide from the fluorescence spectrum is 80 nM, which is well below the value determined for drinking water by World Health Organization (WHO). The interference effect of cations and anions showed that Pz3 could play an important role in the determination of waste NaCN. In addition, Pz3 successfully carried out the selective detection of cyanide in food samples such as bitter almonds and sprouting potatoes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA