Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
J Cancer Res Clin Oncol ; 150(7): 342, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980538

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA), characterized by high heterogeneity and extreme malignancy, has a poor prognosis. Doublecortin-like kinase 1 (DCLK1) promotes a variety of malignant cancers in their progression. Targeting DCLK1 or its associated regulatory pathways can prevent the generation and deterioration of several malignancies. However, the role of DCLK1 in CCA progression and its molecular mechanisms remain unknown. Therefore, we aimed to investigate whether and how DCLK1 contributes to CCA progression. METHODS: The expression of DCLK1 in CCA patients was detected using Immunohistochemistry (IHC). We established DCLK1 knockout and DCLK1 overexpression cell lines for Colony Formation Assay and Transwell experiments to explore the tumor-promoting role of DCLK1. RT-PCR, Western blot and multiple fluorescent staining were used to assess the association between DCLK1 and epithelial-mesenchymal transition (EMT) markers. RNA sequencing and bioinformatics analysis were performed to identify the underlying mechanisms by which DCLK1 regulates CCA progression and the EMT program. RESULTS: DCLK1 was overexpressed in CCA tissues and was associated with poor prognosis. DCLK1 overexpression facilitated CCA cell invasion, migration, and proliferation, whereas DCLK1 knockdown reversed the malignant tendencies of CCA cells, which had been confirmed both in vivo and in vitro. Furthermore, we demonstrated that DCLK1 was substantially linked to the advancement of the EMT program, which included the overexpression of mesenchymal markers and the downregulation of epithelial markers. For the underlying mechanism, we proposed that the PI3K/AKT/mTOR pathway is the key process for the role of DCLK1 in tumor progression and the occurrence of the EMT program. When administered with LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, the tumor's ability to proliferate, migrate, and invade was greatly suppressed, and the EMT process was generally reversed. CONCLUSIONS: DCLK1 facilitates the malignant biological behavior of CCA cells through the PI3K/AKT/mTOR pathway. In individuals with cholangiocarcinoma who express DCLK1 at high levels, inhibitors of the PI3K/AKT/mTOR signaling pathway may be an effective therapeutic approach.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Animais , Feminino , Camundongos , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Prognóstico , Pessoa de Meia-Idade , Proliferação de Células , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica
2.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928187

RESUMO

Chronic liver diseases, fibrosis, cirrhosis, and HCC are often a consequence of persistent inflammation. However, the transition mechanisms from a normal liver to fibrosis, then cirrhosis, and further to HCC are not well understood. This study focused on the role of the tumor stem cell protein doublecortin-like kinase 1 (DCLK1) in the modulation of molecular factors in fibrosis, cirrhosis, or HCC. Serum samples from patients with hepatic fibrosis, cirrhosis, and HCC were analyzed via ELISA or NextGen sequencing and were compared with control samples. Differentially expressed (DE) microRNAs (miRNA) identified from these patient sera were correlated with DCLK1 expression. We observed elevated serum DCLK1 levels in fibrosis, cirrhosis, and HCC patients; however, TGF-ß levels were only elevated in fibrosis and cirrhosis. While DE miRNAs were identified for all three disease states, miR-12136 was elevated in fibrosis but was significantly increased further in cirrhosis. Additionally, miR-1246 and miR-184 were upregulated when DCLK1 was high, while miR-206 was downregulated. This work distinguishes DCLK1 and miRNAs' potential role in different axes promoting inflammation to tumor progression and may serve to identify biomarkers for tracking the progression from pre-neoplastic states to HCC in chronic liver disease patients as well as provide targets for treatment.


Assuntos
Quinases Semelhantes a Duplacortina , Inflamação , Peptídeos e Proteínas de Sinalização Intracelular , Cirrose Hepática , Neoplasias Hepáticas , MicroRNAs , Proteínas Serina-Treonina Quinases , Humanos , MicroRNAs/sangue , MicroRNAs/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/sangue , Cirrose Hepática/genética , Cirrose Hepática/sangue , Inflamação/genética , Inflamação/sangue , Masculino , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/sangue , Feminino , Doença Crônica , Hepatopatias/sangue , Hepatopatias/genética , Pessoa de Meia-Idade , Carcinogênese/genética , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética
3.
Chin J Nat Med ; 22(4): 318-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658095

RESUMO

Double cortin-like kinase 1 (DCLK1) exhibits high expression levels across various cancers, notably in human colorectal cancer (CRC). Diacerein, a clinically approved interleukin (IL)-1ß inhibitor for osteoarthritis treatment, was evaluated for its impact on CRC proliferation and migration, alongside its underlying mechanisms, through both in vitro and in vivo analyses. The study employed MTT assay, colony formation, wound healing, transwell assays, flow cytometry, and Hoechst 33342 staining to assess cell proliferation, migration, and apoptosis. Additionally, proteome microarray assay and western blotting analyses were conducted to elucidate diacerein's specific mechanism of action. Our findings indicate that diacerein significantly inhibits DCLK1-dependent CRC growth in vitro and in vivo. Through high-throughput proteomics microarray and molecular docking studies, we identified that diacerein directly interacts with DCLK1. Mechanistically, the suppression of p-STAT3 expression following DCLK1 inhibition by diacerein or specific DCLK1 siRNA was observed. Furthermore, diacerein effectively disrupted the DCLK1/STAT3 signaling pathway and its downstream targets, including MCL-1, VEGF, and survivin, thereby inhibiting CRC progression in a mouse model, thereby inhibiting CRC progression in a mouse model.


Assuntos
Antraquinonas , Proliferação de Células , Neoplasias Colorretais , Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Humanos , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Antraquinonas/farmacologia , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
Am J Cancer Res ; 14(2): 616-629, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455425

RESUMO

This study was targeted at investigating the biological functions of E74-like ETS transcription factor 1 (ELF1) in pancreatic cancer (PC) and its underlying mechanism. ELF1 expression in PC tissues was detected by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry. Cell counting kit-8 (CCK-8) method, EdU method and flow cytometry were used to detect the cell proliferation and apoptosis of PC cell lines after transfection. A subcutaneous tumorigenesis model was constructed to validate the oncogenic role of ELF1 in vivo. PROMO database was used to predict the binding site of ELF1 on the promoter region of doublecortin-like kinase 1 (DCLK1). Dual-luciferase reporter gene assay, chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) assay and quantitative real-time PCR were performed to detect the binding of ELF1 to the promoter region of DCLK1. The effect of ELF1 on DCLK1 expression was detected by Western blot assay. It was found that ELF1 expression in PC tissues and cells was up-regulated. ELF1 overexpression promoted the proliferation and inhibited the apoptosis of PC cells, while knocking down ELF1 had the opposite effects. ELF1 could bind to the promoter region of DCLK1 and ELF1 overexpression promoted the expression of DCLK1. Bioinformatics analysis suggested that Janus kinase (JAK) - signal transducer and activator of transcription (STAT) signaling pathway was associated to DCLK1 expression, and overexpression of ELF1 promoted the expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). In conclusion, ELF1 promoted the malignant progression of PC via regulating DCLK1/ JAK/STAT signaling pathway.

5.
Biochem Genet ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294590

RESUMO

Recent research has shown that Doublecortin-like kinase 1 (DCLK1) is overexpressed in different types of cancer. It has recently been described as a cancer stem cells (CSCs) marker, is associated with carcinogenesis, and positively correlates with infiltration of multiple immune cell types in some cancers. However, studies focused on assessing DCLK1 expression in HCC are limited, and the role of DCLK1 in HCC tumor immunity remains to be determined. In this study, we used a modified model of the resistant hepatocyte (MRHM) to evaluate DCLK1 expression in HCC. Furthermore, DCLK1 expression in HCC was analyzed using TIMER 2.0, UALCAN, GEPIA, GEO, and HPA web-based tools. Correlations between DCLK1 expression and clinicopathological factors in patients were analyzed using the UALCAN web-based tool. Finally, correlations between DCLK1 and immune infiltrates were investigated using the TIMER 2.0 and TISIDB web-based tools. The results showed that DCLK1 is significantly overexpressed during progression of the HCC carcinogenic process in the MRHM. DCLK1 is overexpressed in HCC according to multiple publics web-based tools, and its overexpression is associated with cancer stage. Furthermore, DCLK1 expression was correlated with infiltration levels of multiple immune cells, immunomodulatory factors, immunoinhibitors, MHC molecules, chemokines, receptors, and immune cell-specific markers. These results suggest that DCLK1 is a potential prognostic biomarker that determines cancer progression and correlates with immune cell infiltration in HCC.

6.
Life Sci ; 336: 122294, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007147

RESUMO

Doublecortin-like kinase 1 (DCLK1), a significant constituent of the protein kinase superfamily and the doublecortin family, has been recognized as a prooncogenic factor that exhibits a strong association with the malignant progression and clinical prognosis of various cancers. DCLK1 serves as a stem cell marker that governs tumorigenesis, tumor cell reprogramming, and epithelial-mesenchymal transition. Multiple studies have indicated the capable of DCLK1 in regulating the DNA damage response and facilitating DNA damage repair. Additionally, DCLK1 is involved in the regulation of the immune microenvironment and the promotion of tumor immune evasion. Recently, DCLK1 has emerged as a promising therapeutic target for a multitude of cancers. Several small-molecule inhibitors of DCLK1 have been identified. Nevertheless, the biological roles of DCLK1 are mainly ambiguous, particularly with the disparities between its α- and ß-form transcripts in the malignant progression of cancers, which impedes the development of more precisely targeted drugs. This article focuses on tumor stem cells, tumor epithelial-mesenchymal transition, the DNA damage response, and the tumor microenvironment to provide a comprehensive overview of the association between DCLK1 and tumor malignant progression, address unsolved questions and current challenges, and project future directions for targeting DCLK1 for the diagnosis and treatment of cancers.


Assuntos
Quinases Semelhantes a Duplacortina , Neoplasias , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Quinases Semelhantes a Duplacortina/genética , Quinases Semelhantes a Duplacortina/imunologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Células-Tronco Neoplásicas , Reparo do DNA/genética , Reparo do DNA/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Evasão Tumoral/genética , Inibidores de Proteínas Quinases/uso terapêutico , Humanos , Isoformas de Proteínas
7.
J Enzyme Inhib Med Chem ; 39(1): 2287990, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38062554

RESUMO

Doublecortin-like kinase 1 (DCLK) is a microtubule-associated serine/threonine kinase that is upregulated in a wide range of cancers and is believed to be related to tumour growth and development. Upregulated DCLK1 has been used to identify patients at high risk of cancer progression and tumours with chemotherapy-resistance. Moreover, DCLK1 has been identified as a cancer stem cell (CSC) biomarker in various cancers, which has received considerable attention recently. Herein, a series of DCLK1 inhibitors were prepared based on the previously reported XMD8-92 structure. Among all the synthesised compounds, D1, D2, D6, D7, D8, D12, D14, and D15 showed higher DCLK1 inhibitory activities (IC50 40-74 nM) than XMD8-92 (IC50 161 nM). Compounds D1 and D2 were selective DCLK1 inhibitors as they showed a rather weak inhibitory effect on LRRK2. The antiproliferative activities of these compounds were also preliminarily evaluated. The structure-activity relationship revealed by our compounds provides useful guidance for the further development of DCLK1 inhibitors.


Assuntos
Quinases Semelhantes a Duplacortina , Inibidores de Proteínas Quinases , Humanos , Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia
8.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003596

RESUMO

While significant strides have been made in understanding cancer biology, the enhancement in patient survival is limited, underscoring the urgency for innovative strategies. Epigenetic modifications characterized by hereditary shifts in gene expression without changes to the DNA sequence play a critical role in producing alternative gene isoforms. When these processes go awry, they influence cancer onset, growth, spread, and cancer stemness. In this review, we delve into the epigenetic and isoform nuances of the protein kinase, doublecortin-like kinase 1 (DCLK1). Recognized as a hallmark of tumor stemness, DCLK1 plays a pivotal role in tumorigenesis, and DCLK1 isoforms, shaped by alternative promoter usage and splicing, can reveal potential therapeutic touchpoints. Our discussion centers on recent findings pertaining to the specific functions of DCLK1 isoforms and the prevailing understanding of its epigenetic regulation via its two distinct promoters. It is noteworthy that all DCLK1 isoforms retain their kinase domain, suggesting that their unique functionalities arise from non-kinase mechanisms. Consequently, our research has pivoted to drugs that specifically influence the epigenetic generation of these DCLK1 isoforms. We posit that a combined therapeutic approach, harnessing both the epigenetic regulators of specific DCLK1 isoforms and DCLK1-targeted drugs, may prove more effective than therapies that solely target DCLK1.


Assuntos
Quinases Semelhantes a Duplacortina , Neoplasias , Humanos , Epigênese Genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Isoformas de Proteínas/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo
9.
J Virol ; 97(11): e0119423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37861336

RESUMO

IMPORTANCE: Severe COVID-19 and post-acute sequelae often afflict patients with underlying co-morbidities. There is a pressing need for highly effective treatment, particularly in light of the emergence of SARS-CoV-2 variants. In a previous study, we demonstrated that DCLK1, a protein associated with cancer stem cells, is highly expressed in the lungs of COVID-19 patients and enhances viral production and hyperinflammatory responses. In this study, we report the pivotal role of DCLK1-regulated mechanisms in driving SARS-CoV-2 replication-transcription processes and pathogenic signaling. Notably, pharmacological inhibition of DCLK1 kinase during SARS-CoV-2 effectively impedes these processes and counteracts virus-induced alternations in global cell signaling. These findings hold significant potential for immediate application in treating COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Quinases Semelhantes a Duplacortina , Humanos , Quinases Semelhantes a Duplacortina/antagonistas & inibidores , Quinases Semelhantes a Duplacortina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais , Replicação Viral/efeitos dos fármacos
10.
Cancer Lett ; 578: 216437, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838282

RESUMO

Ovarian cancer (OvCa) has a dismal prognosis because of its late-stage diagnosis and the emergence of chemoresistance. Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase known to regulate cancer cell "stemness", epithelial-mesenchymal transition (EMT), and drug resistance. Here we show that DCLK1 is a druggable target that promotes chemoresistance and tumor progression of high-grade serous OvCa (HGSOC). Importantly, high DCLK1 expression significantly correlates with poor overall and progression-free survival in OvCa patients treated with platinum chemotherapy. DCLK1 expression was elevated in a subset of HGSOC cell lines in adherent (2D) and spheroid (3D) cultures, and the expression was further increased in cisplatin-resistant (CPR) spheroids relative to their sensitive controls. Using cisplatin-sensitive and resistant isogenic cell lines, pharmacologic inhibition (DCLK1-IN-1), and genetic manipulation, we demonstrate that DCLK1 inhibition was effective at re-sensitizing cells to cisplatin, reducing cell proliferation, migration, and invasion. Using kinase domain mutants, we demonstrate that DCLK1 kinase activity is critical for mediating CPR. The combination of cisplatin and DCLK1-IN-1 showed a synergistic cytotoxic effect against OvCa cells in 3D conditions. Targeted gene expression profiling revealed that DCLK1 inhibition in CPR OvCa spheroids significantly reduced TGFß signaling, and EMT. We show in vivo efficacy of combined DCLK1 inhibition and cisplatin in significantly reducing tumor metastases. Our study shows that DCLK1 is a relevant target in OvCa and combined targeting of DCLK1 in combination with existing chemotherapy could be a novel therapeutic approach to overcome resistance and prevent OvCa recurrence.


Assuntos
Quinases Semelhantes a Duplacortina , Neoplasias Ovarianas , Humanos , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
11.
Eur J Med Chem ; 261: 115846, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37862816

RESUMO

Pancreatic cancer is a highly lethal form of malignancy that continues to pose a significant and unresolved health challenge. Doublecortin-like kinase 1 (DCLK1), a serine/threonine kinase, is found to be overexpressed in pancreatic cancer and holds promise as a potential therapeutic target for this disease. However, few potent inhibitors have been reported currently. Herein, a series of novel purine, pyrrolo [2,3-d]pyrimidine, and pyrazolo [3,4-d] pyrimidine derivatives were designed, synthesized, and evaluated their biological activities in vitro. Among them, compound I-5 stood out as the most potent compound with strong inhibitory activity against DCLK1 (IC50 = 171.3 nM) and remarkable antiproliferative effects on SW1990 cell lines (IC50 = 0.6 µM). Notably, I-5 exhibited higher in vivo antitumor potency (Tumor growth inhibition value (TGI): 68.6 %) than DCLK1-IN-1 (TGI: 24.82 %) in the SW1990 xenograft model. The preliminary mechanism study demonstrated that I-5 not only inhibited SW1990 cell invasion and migration, but also decreased the expression of prominin-1 (CD133) and cluster of differentiation 44 (CD44), which are considered as differentiation markers for SW1990 stem cells. All the results indicated that I-5, a novel DCLK1 inhibitor, shows promise for further investigation in the treatment of pancreatic cancer.


Assuntos
Quinases Semelhantes a Duplacortina , Neoplasias Pancreáticas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases , Neoplasias Pancreáticas/patologia , Esqueleto/metabolismo , Esqueleto/patologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Purinas/farmacologia , Proliferação de Células , Neoplasias Pancreáticas
12.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762326

RESUMO

Doublecortin-like kinase 1 (DCLK1) is a prominent kinase involved in carcinogenesis, serving as a diagnostic marker for early cancer detection and prevention, as well as a target for cancer therapy. Extensive research efforts have been dedicated to understanding its role in cancer development and designing selective inhibitors. In our previous work, we successfully determined the crystal structure of DCLK1 while it was bound to its autoinhibitory domain (AID) at the active site. By analyzing this structure, we were able to uncover the intricate molecular mechanisms behind specific cancer-causing mutations in DCLK1. Utilizing molecular dynamics simulations, we discovered that these mutations disrupt the smooth assembly of the AID, particularly affecting the R2 helix, into the kinase domain (KD). This disruption leads to the exposure of the D533 residue of the DFG (Asp-Phe-Gly) motif in the KD, either through steric hindrance, the rearrangement of electrostatic interactions, or the disruption of local structures in the AID. With these molecular insights, we conducted a screening process to identify potential small-molecule inhibitors that could bind to DCLK1 through an alternative binding mode. To assess the binding affinity of these inhibitors to the KD of DCLK1, we performed calculations on their binding energy and conducted SPR experiments. We anticipate that our study will contribute novel perspectives to the field of drug screening and optimization, particularly in targeting DCLK1.


Assuntos
Quinases Semelhantes a Duplacortina , Peptídeos e Proteínas de Sinalização Intracelular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Serina-Treonina Quinases/metabolismo , Carcinogênese , Mutação
13.
Crit Rev Oncol Hematol ; 191: 104118, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660932

RESUMO

DCLK1, a tuft cell marker, is widely expressed in various tumors. Its high expression levels are closely linked to malignant tumor progression, making it a potential tumor-related marker. Recent studies have shed light on the critical roles of DCLK1 and tuft cells in the immune response and the maintenance of epithelial homeostasis, as well as targeted immune escape mechanisms in the tumor microenvironment. This review aims to comprehensively examine the current understanding of immune-related functions mediated by DCLK1 and tuft cells in epithelial tissues, including the roles of relevant cells and important factors involved. Additionally, this review will discuss recent advances in anti-tumor immunity mediated by DCLK1/tuft cells and their potential as immunotherapeutic targets. Furthermore, we will consider the potential impact of DCLK1 targeted therapy in cancer immunotherapy, particularly DCLK1 kinase inhibitors as potential therapeutic drugs in anti-tumor immunity, providing a new perspective and reference for future research.

14.
Tissue Cell ; 84: 102163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37487255

RESUMO

The exchange of biological material between the neighbouring cells is essential for homeostasis. In pathological conditions, such as cancer, the major challenge in cancer treatment is the abnormal expression of crucial proteins and miRNA exchanged between the cancer cells through extracellular vesicles called exosomes. Clinically, it has been noticed that the primary tumour and the distal metastases are interconnected and co-dependent. The exosomes are key factors responsible for preparing the pre-metastatic niche and communicating between the tumour and the distal metastatic site. Cancer stem cells (CSCs) are a subpopulation of cancer cells with self-renewal characteristics and are shown to be responsible for metastasis. This study aims to understand the effect of metastatic cell line-derived exosomes and their regulation of CSC marker expressions on primary colon cancer cell lines. We have identified that treatment of primary colon cancer cell lines with metastatic colon cancer cell-derived exosomes has significantly increased the proliferation, colony formation, cell migration, and invasion. In addition, there was a significant increase in the number and size of spheroids following the exosomes treatment. We found that this metastatic phenotype is due to the increased expression of CD133 and DCLK1 in primary colon cancer cells.


Assuntos
Neoplasias do Colo , Exossomos , Vesículas Extracelulares , Humanos , Proliferação de Células/genética , Neoplasias do Colo/genética , Quinases Semelhantes a Duplacortina/genética , Quinases Semelhantes a Duplacortina/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Antígeno AC133/genética , Antígeno AC133/metabolismo
15.
Zhonghua Zhong Liu Za Zhi ; 45(7): 594-604, 2023 Jul 23.
Artigo em Chinês | MEDLINE | ID: mdl-37462016

RESUMO

Objective: To explore the mechanism of Doublecortin-like kinase 1 (DCLK1) in promoting cell migration, invasion and proliferation in pancreatic cancer. Methods: The correlation between DCLK1 and Hippo pathway was analyzed using TCGA and GTEx databases and confirmed by fluorescence staining of pancreatic cancer tissue microarrays. At the cellular level, immunofluorescence staining of cell crawls and western blot assays were performed to clarify whether DCLK1 regulates yes associated protein1 (YAP1), a downstream effector of the Hippo pathway. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyze the expressions of YAP1 binding transcription factor TEA-DNA binding proteins (TEAD) and downstream malignant behavior-promoting molecules CYR61, EDN1, AREG, and CTGF. Transwell test of the DCLK1-overexpressing cells treated with the Hippo pathway inhibitor Verteporfin was used to examine whether the malignant behavior-promoting ability was blocked. Analysis of changes in the proliferation index of experimental cells used real-time label-free cells. Results: TCGA combined with GTEx data analysis showed that the expressions of DCLK1 and YAP1 molecules in pancreatic cancer tissues were significantly higher than those in adjacent tissues (P<0.05). Moreover, DCLK1was positively correlated with the expressions of many effectors in the Hippo pathway, including LATS1 (r=0.53, P<0.001), LATS2 (r=0.34, P<0.001), MOB1B (r=0.40, P<0.001). In addition, the tissue microarray of pancreatic cancer patients was stained with multicolor fluorescence, indicated that the high expression of DCLK1 in pancreatic cancer patients was accompanied by the up-regulated expression of YAP1. The expression of DCLK1 in pancreatic cancer cell lines was analyzed by the CCLE database. The results showed that the expression of DCLK1 in AsPC-1 and PANC-1 cells was low. Thus, we overexpressed DCLK1 in AsPC-1 and PANC-1 cell lines and found that DCLK1 overexpression in pancreatic cancer cell lines promoted YAP1 expression and accessible to the nucleus. In addition, DCLK1 up-regulated the expression of YAP1 binding transcription factor TEAD and increased the mRNA expression levels of downstream malignant behavior-promoting molecules. Finally, Verteporfin, an inhibitor of the Hippo pathway, could antagonize the cell's malignant behavior-promoting ability mediated by high expression of DCLK1. We found that the number of migrated cells with DCLK1 overexpressing AsPC-1 group was 68.33±7.09, which was significantly higher than 22.00±4.58 of DCLK1 overexpressing cells treated with Verteporfin (P<0.05). Similarly, the migration number of PANC-1 cells overexpressing DCLK1 was 65.66±8.73, which was significantly higher than 37.00±6.00 of the control group and 32.33±9.61 of Hippo pathway inhibitor-treated group (P<0.05). Meanwhile, the number of invasive cells in the DCLK1-overexpressed group was significantly higher than that in the DCLK1 wild-type group cells, while the Verteporfin-treated DCLK1-overexpressed cells showed a significant decrease. In addition, we monitored the cell proliferation index using the real-time cellular analysis (RTCA) assay, and the proliferation index of DCLK1-overexpressed AsPC-1 cells was 0.66±0.04, which was significantly higher than 0.38±0.01 of DCLK1 wild-type AsPC-1 cells (P<0.05) as well as 0.05±0.03 of DCLK1-overexpressed AsPC1 cells treated with Verteporfin (P<0.05). PANC-1 cells showed the same pattern, with a proliferation index of 0.77±0.04 for DCLK1-overexpressed PANC-1 cells, significantly higher than DCLK1-overexpressed PANC1 cells after Verteporfin treatment (0.14±0.05, P<0.05). Conclusion: The expression of DCLK1 is remarkably associated with the Hippo pathway, it promotes the migration, invasion, and proliferation of pancreatic cancer cells by activating the Hippo pathway.


Assuntos
Quinases Semelhantes a Duplacortina , Neoplasias Pancreáticas , Humanos , Via de Sinalização Hippo , Verteporfina/farmacologia , Linhagem Celular Tumoral , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas de Sinalização YAP , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/genética , Neoplasias Pancreáticas
16.
Biochim Biophys Acta Rev Cancer ; 1878(4): 188911, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182665

RESUMO

Tuft cells are solitary chemosensory cells distributed mainly in hollow organs and detected in human and mouse pancreas precursor lesions of pancreatic cancer. Induced by inflammation and KRAS mutation, pancreatic acinar cell-derived tuft cells play a protective role in epithelium injury. The tumour suppression of tuft cells has been indicated in some studies. However, the function of tuft cells in pancreatic cancer remains unclear. In this review, we first introduce the definition of tuft cells and then review the relationship between tuft cells and pancreatic inflammation. In addition, we emphasized the role of tuft cells in the genesis and development of pancreatic cancers, especially the part of markers for tuft cell's doublecortin-like kinase 1 (DCLK1). Finally, we turn to the microscopic perspective and review the interactions between tuft cells and the microbiome in the pancreatic microenvironment. Overall, we describe the role of tuft cells in response to tissue damage and tumour progression in the pancreas. Nevertheless, the specific formation principle and the more detailed mechanism of action of tuft cells in the pancreas remain to be further explored.


Assuntos
Pâncreas , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Pâncreas/patologia , Proteínas Serina-Treonina Quinases/genética , Neoplasias Pancreáticas/patologia , Inflamação/patologia , Microambiente Tumoral , Quinases Semelhantes a Duplacortina , Neoplasias Pancreáticas
17.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108455

RESUMO

Low serum levels of 1α, 25-dihydroxyvitamin D3 (VD3) are associated with a higher mortality in trauma patients with sepsis or ARDS. However, the molecular mechanisms behind this observation are not yet understood. VD3 is known to stimulate lung maturity, alveolar type II cell differentiation, or pulmonary surfactant synthesis and guides epithelial defense during infection. In this study, we investigated the impact of VD3 on the alveolar-capillary barrier in a co-culture model of alveolar epithelial cells and microvascular endothelial cells respectively in the individual cell types. After stimulation with bacterial LPS (lipopolysaccharide), gene expression of inflammatory cytokines, surfactant proteins, transport proteins, antimicrobial peptide, and doublecortin-like kinase 1 (DCLK1) were analyzed by real-time PCR, while corresponding proteins were evaluated by ELISA, immune-fluorescence, or Western blot. The effect of VD3 on the intracellular protein composition in H441 cells was analyzed by quantitative liquid chromatography-mass spectrometry-based proteomics. VD3 effectively protected the alveolar-capillary barrier against LPS treatment, as indicated by TEER measurement and morphological assessment. VD3 did not inhibit the IL-6 secretion by H441 and OEC but restricted the diffusion of IL-6 to the epithelial compartment. Further, VD3 could significantly suppress the surfactant protein A expression induced in the co-culture system by LPS treatment. VD3 induced high levels of the antimicrobial peptide LL-37, which counteracted effects by LPS and strengthened the barrier. Quantitative proteomics identified VD3-dependent protein abundance changes ranging from constitutional extracellular matrix components and surfactant-associated proteins to immune-regulatory molecules. DCLK1, as a newly described target molecule for VD3, was prominently stimulated by VD3 (10 nM) and seems to influence the alveolar-epithelial cell barrier and regeneration.


Assuntos
Células Endoteliais , Interleucina-6 , Humanos , Lipopolissacarídeos/farmacologia , Proteínas Associadas a Surfactantes Pulmonares , Células Epiteliais Alveolares , Tensoativos , Quinases Semelhantes a Duplacortina
18.
Breast Cancer Res ; 25(1): 43, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069669

RESUMO

Triple-negative breast cancer (TNBC) exhibits the poorest outcomes among breast cancer subtypes due to the high heterogeneity and a lasting scarcity of effectual treatments. Targeted therapies based on molecular subtypes of TNBC are critical step toward tailoring treatments to improve clinical outcomes. Gastrointestinal cancer stem cell (CSC) marker DCLK1 was reported to be highly expressed in stem cell-rich subtype of TNBC. Here, we firstly explored the impacts of DCLK1 on tumor cells as well as their immune microenvironment in TNBC and potential therapeutic strategies for TNBC patients with high DCLK1 expression. Our results disclosed that DCLK1 overexpression promoted, while knockout of DCLK1 suppressed the CSC-like traits of TNBC cells and resistance to chemotherapeutics. Besides, DCLK1 supported immune escape by inhibiting intratumoral cytotoxic T cell infiltration in TNBC and hence limited immune checkpoint inhibitors efficacy. Mechanistically, bioinformatics analysis revealed that IL-6/STAT3 signaling was significantly enriched in high DCLK1-expressing patients, and our results further revealed that DCLK1 enhanced IL-6 expression and STAT3 activation in TNBC cells, which finally gave rise to upregulated CSC traits and suppressed CD8+ T-cell activity. Inhibiting IL-6/STAT3 pathway by IL-6R antagonist, Tocilizumab or STAT3 inhibitor, S31-201 could abolish DCLK1-promoted malignant phenotypes of TNBC cells. Finally, DCLK1 was identified to be specifically and highly expressed in the mesenchymal-like subtype of TNBC and targeting DCLK1 could improve chemotherapy efficacy and activate antitumor immunity. Overall, our study revealed the potential clinical benefits of targeting DCLK1 in TNBC treatment.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Quinases Semelhantes a Duplacortina , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/uso terapêutico
19.
EMBO Mol Med ; 15(5): e17198, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36896602

RESUMO

Atherosclerosis is a chronic inflammatory disease with high morbidity and mortality rates worldwide. Doublecortin-like kinase 1 (DCLK1), a microtubule-associated protein kinase, is involved in neurogenesis and human cancers. However, the role of DCLK1 in atherosclerosis remains undefined. In this study, we identified upregulated DCLK1 in macrophages in atherosclerotic lesions of ApoE-/- mice fed an HFD and determined that macrophage-specific DCLK1 deletion attenuates atherosclerosis by reducing inflammation in mice. Mechanistically, RNA sequencing analysis indicated that DCLK1 mediates oxLDL-induced inflammation via NF-κB signaling pathway in primary macrophages. Coimmunoprecipitation followed by LC-MS/MS analysis identified IKKß as a binding protein of DCLK1. We confirmed that DCLK1 directly interacts with IKKß and phosphorylates IKKß at S177/181, thereby facilitating subsequent NF-κB activation and inflammatory gene expression in macrophages. Finally, a pharmacological inhibitor of DCLK1 prevents atherosclerotic progression and inflammation both in vitro and in vivo. Our findings demonstrated that macrophage DCLK1 promotes inflammatory atherosclerosis by binding to IKKß and activating IKKß/NF-κB. This study reports DCLK1 as a new IKKß regulator in inflammation and a potential therapeutic target for inflammatory atherosclerosis.


Assuntos
Aterosclerose , Quinase I-kappa B , Animais , Humanos , Camundongos , Aterosclerose/genética , Cromatografia Líquida , Quinases Semelhantes a Duplacortina , Quinase I-kappa B/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Espectrometria de Massas em Tandem
20.
Biomedicines ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979969

RESUMO

Doublecortin-like kinase 1 (DCLK1) is a functional serine/threonine (S/T)-kinase and a member of the doublecortin family of proteins which are characterized by their ability to bind to microtubules (MTs). DCLK1 is a proposed cancer driver gene, and its upregulation is associated with poor overall survival in several solid cancer types. However, how DCLK1 associates with MTs and how its kinase function contributes to pro-tumorigenic processes is poorly understood. This review builds on structural models to propose not only the specific functions of the domains but also attempts to predict the impact of individual somatic missense mutations on DCLK1 functions. Somatic missense mutations in DCLK1 are most frequently located within the N-terminal MT binding region and likely impact on the ability of DCLK1 to bind to αß-tubulin and to polymerize and stabilize MTs. Moreover, the MT binding affinity of DCLK1 is negatively regulated by its auto-phosphorylation, and therefore mutations that affect kinase activity are predicted to indirectly alter MT dynamics. The emerging picture portrays DCLK1 as an MT-associated protein whose interactions with tubulin heterodimers and MTs are tightly controlled processes which, when disrupted, may confer pro-tumorigenic properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA