Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(2): 324-337, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37888879

RESUMO

Ecological risk assessment (ERA) of metals typically starts from standardized toxicity tests, the data from which are then extrapolated to derive safe concentrations for the envisioned protection goals. Because such extrapolation in conventional ERA lacks ecological realism, ecological modeling is considered as a promising new approach for extrapolation. Many published population models are complex, that is, they include many processes and parameters, and thus require an extensive dataset to calibrate. In the present study, we investigated how individual-based models based on a reduced version of the Dynamic Energy Budget theory (DEBkiss IBM) could be applied for metal effects on the rotifer Brachionus calyciflorus. Data on survival over time and reproduction at different temperatures and food conditions were used to calibrate and evaluate the model for copper effects. While population growth and decline were well predicted, the underprediction of population density and the mismatch in the onset of copper effects were attributed to the simplicity of the approach. The DEBkiss IBM was applied to toxicity datasets for copper, nickel, and zinc. Predicted effect concentrations for these metals based on the maximum population growth rate were between 0.7 and 3 times higher in all but one case (10 times higher) than effect concentrations based on the toxicity data. The size of the difference depended on certain characteristics of the toxicity data: both the steepness of the concentration-effect curve and the relative sensitivity of lethal and sublethal effects played a role. Overall, the present study is an example of how a population model with reduced complexity can be useful for metal ERA. Environ Toxicol Chem 2024;43:324-337. © 2023 SETAC.


Assuntos
Rotíferos , Poluentes Químicos da Água , Animais , Cobre/análise , Níquel/análise , Zinco/análise , Reprodução , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 33(7): 1466-75, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24395114

RESUMO

Toxicokinetic-toxicodynamic (TKTD) modeling offers many advantages in the analysis of ecotoxicity test data. Calibration of TKTD models, however, places different demands on test design compared with classical concentration-response approaches. In the present study, useful complementary information is provided regarding test design for TKTD modeling. A case study is presented for the pond snail Lymnaea stagnalis exposed to the narcotic compound acetone, in which the data on all endpoints were analyzed together using a relatively simple TKTD model called DEBkiss. Furthermore, the influence of the data used for calibration on accuracy and precision of model parameters is discussed. The DEBkiss model described toxic effects on survival, growth, and reproduction over time well, within a single integrated analysis. Regarding the parameter estimates (e.g., no-effect concentration), precision rather than accuracy was affected depending on which data set was used for model calibration. In addition, the present study shows that the intrinsic sensitivity of snails to acetone stays the same across different life stages, including the embryonic stage. In fact, the data on egg development allowed for selection of a unique metabolic mode of action for the toxicant. Practical and theoretical considerations for test design to accommodate TKTD modeling are discussed in the hope that this information will aid other researchers to make the best possible use of their test animals.


Assuntos
Acetona/toxicidade , Lymnaea/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetona/análise , Animais , Simulação por Computador , Ecotoxicologia , Lymnaea/fisiologia , Modelos Biológicos , Óvulo/efeitos dos fármacos , Óvulo/fisiologia , Lagoas/análise , Reprodução/efeitos dos fármacos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA