Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611769

RESUMO

Carbothioamides 3a,b were generated in high yield by reacting furan imidazolyl ketone 1 with N-arylthiosemicarbazide in EtOH with a catalytic amount of conc. HCl. The reaction of carbothioamides 3a,b with hydrazonyl chlorides 4a-c in EtOH with triethylamine at reflux produced 1,3-thiazole derivatives 6a-f. In a different approach, the 1,3-thiazole derivatives 6b and 6e were produced by reacting 3a and 3b with chloroacetone to afford 8a and 8b, respectively, followed by diazotization with 4-methylbenzenediazonium chloride. The thiourea derivatives 3a and 3b then reacted with ethyl chloroacetate in ethanol with AcONa at reflux to give the thiazolidinone derivatives 10a and 10b. The produced compounds were tested for antioxidant and antibacterial properties. Using phosphomolybdate, promising thiazoles 3a and 6a showed the best antioxidant activities at 1962.48 and 2007.67 µgAAE/g dry samples, respectively. Thiazoles 3a and 8a had the highest antibacterial activity against S. aureus and E. coli with 28, 25 and 27, 28 mm, respectively. Thiazoles 3a and 6d had the best activity against C. albicans with 26 mm and 37 mm, respectively. Thiazole 6c had the highest activity against A. niger, surpassing cyclohexamide. Most compounds demonstrated lower MIC values than neomycin against E. coli, S. aureus and C. albicans. A molecular docking study examined how antimicrobial compounds interact with DNA gyrase B crystal structures. The study found that all of the compounds had good binding energy to the enzymes and reacted similarly to the native inhibitor with the target DNA gyrase B enzymes' key amino acids.


Assuntos
Antioxidantes , DNA Girase , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Imidazóis , Candida albicans , Tiazóis/farmacologia
2.
Molecules ; 28(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138500

RESUMO

The emergence of antimicrobial resistance due to the widespread and inappropriate use of antibiotics has now become the global health challenge. Flavonoids have long been reported to be a potent antimicrobial agent against a wide range of pathogenic microorganisms in vitro. Therefore, new antibiotics development based on flavonoid structures could be a potential strategy to fight against antibiotic-resistant infections. This research aims to screen the potency of flavonoids of the genus Erythrina as an inhibitor of bacterial ATPase DNA gyrase B. From the 378 flavonoids being screened, 49 flavonoids show potential as an inhibitor of ATPase DNA gyrase B due to their lower binding affinity compared to the inhibitor and ATP. Further screening for their toxicity, we identified 6 flavonoids from these 49 flavonoids, which are predicted to have low toxicity. Among these flavonoids, erystagallin B (334) is predicted to have the best pharmacokinetic properties, and therefore, could be further developed as new antibacterial agent.


Assuntos
Antibacterianos , Erythrina , Antibacterianos/farmacologia , Antibacterianos/química , DNA Girase/química , Flavonoides/farmacologia , Flavonoides/química , Adenosina Trifosfatases , Testes de Sensibilidade Microbiana , Bactérias/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química
3.
Arch Biochem Biophys ; 747: 109761, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734644

RESUMO

Currently, drug resistance to commercially available antibiotics is imparting negative consequences to global health, and the development of novel antibiotics in a timely manner is a prime need of the hour. In the current study, an e-pharmacophore model was built using the 3D structure of DNA gyrase in complex with a standard inhibitor. The generated model was subjected to a pharmacophore based virtual screening against 45,257,086 molecules having 223,460,579 conformers available in MCULE database. Pharmacophore based screening retrieved eight molecules as top hit based on pharmacophoric features in comparison to standard inhibitors. Afterward, all eight compounds were subjected molecular docking based on deep learning algorithm. The molecular docking revealed that compound MCULE-6042843173 and MCULE-2362244223 had significant binding orientation inside active pocket of targeted protein with binding affinity of -9.52 and -9.24 kcal/mol respectively. In addition, density functional theory studies (DFT) were performed to evaluate quantum mechanics of top ranked compounds which were investigated through quantum mechanics (QM) computations which strongly assisted the findings of other in-silico investigations. Consequently, the MCULE-6042843173 and MCULE-2362244223 were subjected to MD simulation studies for evaluation of stability, hydrogen bond analysis, van der Waals interactions, and the contact profile of compounds with targeted amino acid residues. Findings of current study suggested MCULE-6042843173 and MCULE-2362244223 as potential and novel inhibitor of DNA Gyrase enzyme.

4.
Heliyon ; 9(8): e18742, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636470

RESUMO

The primary objective of this research work was to study the antibacterial effects of Cupressus funebris essential oil (EO) against various drug resistant bacterial pathogens along with studying the molecular docking interactions of the major components of the EO with the key bacterial proteins/enzymes. Gas chromatography-mass spectrometry was used to analyse the chemical composition of the Cupressus funebris EO. The initial antibacterial screening was performed by using disc diffusion and microdilution methods. Scanning electron microscopy was also performed in order to study effects of the EO on bacterial cell morphology. Further, molecular docking studies were performed using Autodock Vina and results were visualised by BIOVIA Discovery Studio. The chemical composition of the EO showed the presence of 15 components with citronellal, terpinene-4-ol, α-phellandrene and 1,8-cineole as the major components of the EO. Results indicated that the EO of Cupressus funebris exhibited dose-dependent as well as time dependent antibacterial effects. The scanning electron microscopy indicated that the Cupressus funebris EO led to membrane rupture and permeabilization of the bacterial cells. Molecular docking studies indicated that the major compounds of the EO (citronellal and terpinene-4ol) showed strong interactions with the active site of the bacterial DNA gyrase enzyme explaining the antibacterial mode of action of the EO. Ciprofloxacin was also used for docking which showed stronger interactions with the target protein than citronellal or terpinene-4-ol. In conclusion, the major findings of the current study were that the EO of Cupressus funebris causes bacterial membrane rupture and permeabilization, shows time-dependent and dose-dependent antibacterial action, along with interacting with crucial bacterial enzyme viz., DNA gyrase as indicated by molecular docking studies.

5.
J Biomol Struct Dyn ; : 1-12, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608545

RESUMO

The alarming rise in the rate of antibiotic resistance is a matter of significant concern. DNA gyrase B (GyrB), a critical bacterial enzyme involved in DNA replication, transcription, and recombination, has emerged as a promising target for antibacterial agents. Inhibition of GyrB disrupts bacterial DNA replication, leading to cell death, making it an attractive candidate for antibiotic development. Although several classes of antibiotics targeting GyrB are currently in clinical use, the emergence of antibiotic resistance necessitates the exploration of novel inhibitors. In this study, we aimed to identify potential Escherichia coli GyrB inhibitors from a database of phytoconstituents sourced from Indian medicinal plants. Utilizing virtual screening, we performed a rigorous search to identify compounds with the most promising inhibitory properties against GyrB. Two compounds, namely Zizogenin and Cucurbitacin S, were identified based on their favorable drug likeliness and pharmacokinetic profiles. Employing advanced computational techniques, we analyzed the binding interactions of Zizogenin and Cucurbitacin S with the ATP-binding site of GyrB through molecular docking simulations. Both compounds exhibited robust binding interactions, evidenced by their high docking energy scores. To assess the stability of these interactions, we conducted extensive 100 ns molecular dynamics (MD) simulations, which confirmed the stability of Zizogenin and Cucurbitacin S when bound to GyrB. In conclusion, our study highlights Zizogenin and Cucurbitacin S as promising candidates for potential antibacterial agents targeting GyrB. Experimental validation of these compounds is warranted to further explore their efficacy and potential as novel antibiotics to combat antibiotic-resistant bacteria.Communicated by Ramaswamy H. Sarma.

6.
Curr Drug Discov Technol ; 20(4): e220223213933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36815634

RESUMO

BACKGROUND: Tuberculosis (TB) is one of the leading causes of death in the post-COVID- 19 era. It has been observed that there is a devastating condition with a 25-30% increase in TB patients. DNA gyrase B isoform has proved its high potential to be a therapeutically effective target for developing newer and safer anti-TB agents. OBJECTIVE: This study aims to identify minimum structural requirements for the optimization of thiazolopyridine derivatives having DNA gyrase inhibitory activities. Moreover, developed QSAR models could be used to design new thiazolopyridine derivatives and predict their DNA gyrase B inhibitory activity before synthesis. METHODS: 3D-QSAR and Group-based QSAR (G-QSAR) methodologies were adopted to develop accurate, reliable, and predictive QSAR models. Statistical methods such as kNN-MFA SW-FB and MLR SW-FB were used to correlate dependent parameters with descriptors. Both models were thoroughly validated for internal and external predictive abilities. RESULTS: The 3D-QSAR model significantly correlated steric and electrostatic descriptors with q2 0.7491 and predicted r2 0.7792. The G-QSAR model showed that parameters such as SsOHE-index, slogP, ChiV5chain, and T_C_C_3 were crucial for optimizing thiazolopyridine derivatives as DNA gyrase inhibitors. The 3D-QSAR model was interpreted extensively with respect to 3D field points, and the pattern of fragmentation was studied in the G-QSAR model. CONCLUSION: The 3D-QSAR and G-QSAR models were found to be highly predictive. These models could be useful for designing potent DNA gyrase B inhibitors before their synthesis.


Assuntos
COVID-19 , Tuberculose , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Inibidores da Topoisomerase II/química , DNA Girase/metabolismo , Antituberculosos/farmacologia , Relação Quantitativa Estrutura-Atividade
7.
J Biomol Struct Dyn ; 41(17): 8165-8174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36214687

RESUMO

A new series of ciprofloxacin-derived Ugi adducts were rationally designed and synthesized. The synthesized molecules were explored for their potential antimicrobial activities against four pathogenic microorganisms. Among these derivatives, compound 7h with a 4-nitrophenyl substituent at R2 exhibited significant activity against two tested Gram-positive bacteria with a minimum inhibitory concentration value of 0.097 µg/mL while 7i bearing 4-chlorophenyl pendant demonstrated the best antimicrobial activities against Gram-negative bacteria. Furthermore, the analysis of the structure-activity relationships disclosed that types of substitutions differently affect the bacteria so the most potent derivative against Gram-negative infections was the least active one in Gram-positive microorganisms. Also, the molecular docking and molecular dynamic simulations were executed on 7i as the most potent Gram-negative anti-bacterial agent against ATP-binding sites of DNA gyrase B. Accordingly, our findings suggest that ciprofloxacin-based Ugi adducts are an interesting precursor for the design of potent antimicrobial agents.Communicated by Ramaswamy H. Sarma.

8.
Microorganisms ; 10(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557686

RESUMO

The World Health Organization reported that tuberculosis remains on the list of the top ten threats to public health worldwide. Among the main causes is the limited effectiveness of treatments due to the emergence of resistant strains of Mycobacterium tuberculosis. One of the main drug targets studied to combat M. tuberculosis is DNA gyrase, the only enzyme responsible for regulating DNA topology in this specie and considered essential in all bacteria. In this context, the present work tested the ability of 2824 anthraquinones retrieved from the PubChem database to act as competitive inhibitors through interaction with the ATP-binding pocket of DNA gyrase B of M. tuberculosis. Virtual screening results based on molecular docking identified 7122772 (N-(2-hydroxyethyl)-9,10-dioxoanthracene-2-sulfonamide) as the best-scored ligand. From this anthraquinone, a new derivative was designed harbouring an aminotriazole moiety, which exhibited higher binding energy calculated by molecular docking scoring and free energy calculation from molecular dynamics simulations. In addition, in these last analyses, this ligand showed to be stable in complex with the enzyme and further predictions indicated a low probability of cytotoxic and off-target effects, as well as an acceptable pharmacokinetic profile. Taken together, the presented results show a new synthetically accessible anthraquinone with promising potential to inhibit the GyrB of M. tuberculosis.

9.
Braz J Microbiol ; 53(2): 715-726, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35149984

RESUMO

Monochoria hastata (L.) Solms (family Pontederiaceae), an ethnomedicinal aquatic herb, is used to remedy several gastrointestinal diseases by various ethnic groups in India. The present study aimed to purify and characterize the antibacterial active ingredient against gastrointestinal (GI) diseases and its mode of action using in vitro experimental models. The active lead molecule in the ethyl acetate extract (EA-Mh) fraction has been purified and characterized through high-performance liquid chromatography (HPLC), proton nuclear magnetic resonance (1H NMR), and electrospray ionization mass spectrometry (ESI-MS) methods. The anti-enteric efficacy has been evaluated against enteropathogenic Gram-positive and Gram-negative bacteria by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), lactate dehydrogenase (LDH), and scanning electron microscopy (SEM) studies. The synergistic and antagonistic studies were done on E. coli MTCC 723 using standard antibiotics (ampicillin and kanamycin, final conc. 50 µg/ml) in a sterilized 96-well micro-plate, incubated at 37 ℃ for 24 h. The chromatographic and spectroscopic analyses revealed the presence of tridecanoic acid methyl ester (TAME) in the bioactive fraction. The compound causes significant extracellular leakage activity by disrupting cellular morphology in the Enterococcus faecalis MCC 2041 T and Salmonella enterica serovar Typhimurium MTCC 98, at a dose of 375 µg/ml and 750 µg/ml, respectively. The SEM study shows a significant rupturing of E. coli and E. faecalis cells due to TAME induced autolysis. It has synergistic activity with ampicillin. The in silico molecular docking through the AutoDock Vina 4.2 and GROMACS (ver. 5.1) Charmm27 force field results showed that the TAME had a strong binding affinity Escherichia coli DNA Gyrase B (PDB ID: 5l3j.pdb) protein and caused conformational changes. Thus, the manuscript reports the first time on the characterization of TAME from this plant with a detailed antibacterial mode of action studies.


Assuntos
Bactérias Gram-Negativas , Pontederiaceae , Ampicilina , Antibacterianos/química , Escherichia coli , Ésteres/farmacologia , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Folhas de Planta , Salmonella typhimurium
10.
Comput Biol Med ; 135: 104626, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34246160

RESUMO

Bacterial diseases are considered by the World Health Organization to be one of the greatest threats to public health worldwide, mainly due to the increasingly frequent resistance to traditional antibiotics. Estimates from the World Bank indicate that the annual global economic impacts of antibiotic resistance will reach US$1.0-3.4 trillion by 2030. With this, the demand for studies aiming at the discovery of new antibiotics or molecules that may play a synergistic role within the spectrum of drug-resistant bacteria is of fundamental importance. In this in silico study, ligands generated from anthraquinones with established antibacterial activity were evaluated as potential inhibitors of the DNA gyrase subunit B of two species of Gram-positive and two Gram-negative bacteria. The main result of molecular docking-based virtual screening reveals several anthraquinones with remarkable binding energies, of which 7,7'-bializarin (ZINC000004783172) exhibited the highest value for all DNA gyrases subunit B studied and formed stable complexes, as evidenced by molecular dynamics simulations. Collectively, the results presented here reveal the potential of this molecule to bind tightly to the active site of DNA gyrases subunit B of Escherichia coli, Salmonella enterica (subtype typhi), Enterococcus faecalis, and Staphylococcus aureus, and therefore represents a promising candidate for further in vitro testing aimed at evaluating its antibacterial effect.


Assuntos
DNA Girase , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores da Topoisomerase II/farmacologia
11.
J Comput Chem ; 42(22): 1561-1578, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34041765

RESUMO

Infectious diseases of bacteria and fungi have become a major risk to public health because of antibiotic and antifungal resistance. However, the availability of effective antibacterial and antifungal agents is becoming increasingly limited with growing resistance to existing drugs. In response to that, novel agents are critically needed to overcome such resistance. A new series of 6-hydroxyquinolinone 3, 4, 5a, 5b, 6a and 6b bearing different side chains were synthesized and evaluated as antimicrobials against numbers of bacteria and fungi, using inhibition zone technique. As one of these derivatives, compound 3 was identified as a potent antibacterial and antifungal agent against all tested microorganisms with good minimum inhibitory concentration values comparable to reference drugs. Molecular docking studies were performed on antibacterial and antifungal targets; microbial DNA gyrase B of Staphylococcus aureus (PDB ID: 4URO); N-myristoyltransferase of Candida albicans (PDB ID: 1IYK), respectively, to predict the most probable type of interaction at the active site of the target protein in addition to binding affinities and orientations of docked ligands. Additionally, in silico prediction in terms of detailed physicochemical ADME and toxicity profile relating drug-likeness as well as medicinal chemistry friendliness was performed to all synthesized compounds. The results indicated that a novel 4,6-dihydroxyquinolin-2(1H)-one (3) is likely to be a newly synthesized drug candidate, indicating low toxicity in addition to good in silico absorption. In order to pave the way for more logical production of such compounds, structure-activity and toxicity relationships are also discussed.


Assuntos
Candida albicans/efeitos dos fármacos , Desenho de Fármacos , Quinolonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos , Antifúngicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinolonas/síntese química , Quinolonas/química , Relação Estrutura-Atividade
12.
Molecules ; 26(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801316

RESUMO

A pharmacophore model for inhibitors of Escherichia coli's DNA Gyrase B was developed, using computer-aided drug design. Subsequently, docking studies showed that 2,5(6)-substituted benzimidazole derivatives are promising molecules, as they possess key hydrogen bond donor/acceptor groups for an efficient interaction with this bacterial target. Furthermore, 5(6)-bromo-2-(2-nitrophenyl)-1H-benzimidazole, selected as a core molecule, was prepared on a multi-gram scale through condensation of 4-bromo-1,2-diaminobenzene with 2-nitrobenzaldehyde using a sustainable approach. The challenging functionalization of the 5(6)-position was carried out via palladium-catalyzed Suzuki-Miyaura and Buchwald-Hartwig amination cross-coupling reactions between N-protected-5-bromo-2-nitrophenyl-benzimidazole and aryl boronic acids or sulfonylanilines, with yields up to 81%. The final designed molecules (2-(aminophen-2-yl)-5(6)-substituted-1H-benzimidazoles), which encompass the appropriate functional groups in the 5(6)-position according to the pharmacophore model, were obtained in yields up to 91% after acid-mediated N-boc deprotection followed by Pd-catalyzed hydrogenation. These groups are predicted to favor interactions with DNA gyrase B residues Asn46, Asp73, and Asp173, aiming to promote an inhibitory effect.


Assuntos
Benzimidazóis/química , DNA Girase/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Paládio/química , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/antagonistas & inibidores
13.
Microb Pathog ; 147: 104387, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32702375

RESUMO

A necessity of therapeutics against antibiotic-resistant bacteria has led to a search for novel antibacterial compounds. The strategy to isolate compounds from non-microbial sources is the key to prevent antibiotic resistance. Here, we report isolation and characterization of an antibacterial coumarin derivative, 4-diphenylamino 3-iodo coumarin (4-DPA3IC) from a traditional drug formulation. The compound elicited high activity against MDR strains of S. aureus. Targets were identified through computational methods encompassing modules of Schrodinger 10.4. The 4-DPA3IC targeted S. aureus DNA gyrase enzyme B subunit. Amino acid residues and interactions involved here are totally different from those of novobiocin and clorobiocin. The validation was done by in vitro DNA gyrase supercoiling inhibition assay. This study proved 4-DPA3IC could potentially act against novobiocin and cholorbiocin resistant strains of S. aureus. Thus, the 4-DPA3IC is a unique inhibitor of bacterial DNA gyrase due to its plant origin as compared to other reported inhibitors.


Assuntos
Cumarínicos , DNA Girase , Staphylococcus aureus Resistente à Meticilina , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , Cumarínicos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Inibidores da Topoisomerase II/farmacologia
14.
Bioorg Chem ; 100: 103905, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388436

RESUMO

In the present study, we attempted to develop a novel class of compounds active against Pseudomonas aeruginosa (Pa) by exploring the pharmaceutically well exploited enzyme targets. Since, lack of Pa gyrase B crystal structures, Thermus thermophilus gyrase B in complex with novobiocin (1KIJ) was used as template to generate model structure by performing homology modeling. Further the best model was validated and used for high-throughput virtual screening, docking and dynamics simulations using the in-house database for identification of Pa DNA gyrase B inhibitors. This study led to an identification of three lead molecules with IC50 values in range of 6.25-15.6 µM against Pa gyrase supercoiling assay. Lead-1 optimization and expansion resulted in 15 compounds. Among the synthesized compounds six compounds were shown good enzyme inhibition than Lead-1 (IC50 6.25 µM). Compound 13 emerged as the most potential compound exhibiting inhibition of Pa gyrase supercoiling with an IC50 of 2.2 µM; and in-vitro Pa activity with MIC of 8 µg/mL in presence of efflux pump inhibitor; hence could be further developed as novel inhibitor for Pa gyrase B.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Girase/metabolismo , Pseudomonas aeruginosa/enzimologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , DNA Girase/química , Desenho de Fármacos , Humanos , Modelos Moleculares , Oxazóis/síntese química , Oxazóis/química , Oxazóis/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Tiazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia , Inibidores da Topoisomerase II/síntese química
15.
Bioorg Chem ; 96: 103591, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32004896

RESUMO

We describe herein the synthesis, characterization and biological studies of novel PEGylated triarylmethanes. Non-symmetrical and symmetrical triarylmethanes series have been synthesized by Friedel-Crafts hydroxyalkylation or directly from bisacodyl respectively followed by a functionalization with PEG fragments in order to increase bioavailability and biological effectiveness. The antimicrobial activity was investigated against Gram-positive and Gram-negative foodborne pathogens and against Candida albicans, an opportunistic pathogenic yeast. The anti-biocidal activity was also studied using Staphylococcus aureus as a reference bacterium. Almost all PEGylated molecules displayed an antifungal activity comparable with fusidic acid with MIC values ranging from 6.25 to 50 µg/mL. Compounds also revealed a promising antibiofilm activity with biofilm eradication percentages values above 80% for the best molecules (compounds 4d and 7). Compounds 7 and 8b showed a modest antiproliferative activity against human colorectal cancer cell lines HT-29. Finally, in silico molecular docking studies revealed DHFR and DNA gyrase B as potential anti-bacterial targets and in silico predictions of ADME suggested adequate drug-likeness profiles for the synthetized triarylmethanes.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Metano/análogos & derivados , Metano/farmacologia , Antibacterianos/síntese química , Antifúngicos/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Candidíase/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células HT29 , Humanos , Metano/síntese química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Hidrocarbonetos Policíclicos Aromáticos/síntese química , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
16.
Bioorg Chem ; 96: 103656, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32062449

RESUMO

A novel series of [1,2,4]triazolo[4,3-a]quinoxaline derivatives of different heteroaromatization members were synthesized. The newly synthesized molecules were explored for their potential antimicrobial activities against a panel of pathogenic organisms. Among these derivatives, the chalcone compound 6e with a methoxy substituent exhibited broad potent antimicrobial activity against most of the bacterial and fungal strains. Furthermore, the analysis of the SAR disclosed that the linker and terminal aromatic fragments perform critical roles in exerting antibacterial activity. The molecular docking calculations were executed on two of the most bacterial targets, ATP-binding sites of DNA gyrase B, and the folate-binding site of DHFR enzymes. The results presented good binding data to the pockets of both enzymes showing different linkers contributions through the hydrogen-bonding and aromatic stacking interactions that stabilize the compounds in their pockets taking 6e compound as representative of most active analogs. In addition, good pharmacokinetic profiling data for the 6e compound was obtained and compared to reference drugs. Accordingly, our findings suggest that [1,2,4]triazolo[4,3-a]quinoxaline scaffold is an interesting precursor for the design of potent antimicrobial agents with multitarget inhibition.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/enzimologia , Antagonistas do Ácido Fólico/farmacologia , Quinoxalinas/farmacologia , Inibidores da Topoisomerase II/farmacologia , Antibacterianos/química , Antibacterianos/farmacocinética , DNA Girase/metabolismo , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacocinética , Humanos , Modelos Moleculares , Quinoxalinas/química , Quinoxalinas/farmacocinética , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacocinética , Triazóis/química , Triazóis/farmacocinética , Triazóis/farmacologia
17.
Eur J Med Chem ; 188: 112022, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31901744

RESUMO

Due to the occurrence of antibiotic resistance, bacterial infectious diseases have become a serious threat to public health. To overcome antibiotic resistance, novel antibiotics are urgently needed. N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides are a potential new class of antibacterial agents, as one of its derivatives was identified as an antibacterial agent against S. aureus. However, no potency-directed structural optimization has been performed. In this study, we designed and synthesized 37 derivatives, and evaluated their antibacterial activity against S. aureus ATCC29213, which led to the identification of ten potent antibacterial agents with minimum inhibitory concentration (MIC) values below 1 µg/mL. Next, we performed bacterial growth inhibition assays against a panel of drug-resistant clinical isolates, including methicillin-resistant S. aureus, and cytotoxicity assays with HepG2 and HUVEC cells. One of the tested compounds named 1-ethyl-4-hydroxy-2-oxo-N-(5-(thiazol-2-yl)-1,3,4-thiadiazol-2-yl)-1,2-dihydroquinoline-3-carboxamide (g37) showed 2 to 128-times improvement compared with vancomycin in term of antibacterial potency against the tested strains (MICs: 0.25-1 µg/mL vs. 1-64 µg/mL) and an optimal selective toxicity (HepG2/MRSA, 110.6 to 221.2; HUVEC/MRSA, 77.6-155.2). Further, comprehensive evaluation indicated that g37 did not induce resistance development of MRSA over 20 passages, and it has been confirmed as a bactericidal, metabolically stable, orally active antibacterial agent. More importantly, we have identified the S. aureus DNA gyrase B as its potential target and proposed a potential binding mode by molecular docking. Taken together, the present work reports the most potent derivative of this chemical series (g37) and uncovers its potential target, which lays a solid foundation for further lead optimization facilitated by the structure-based drug design technique.


Assuntos
Antibacterianos/farmacologia , Quinolonas/farmacologia , Tiadiazóis/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , DNA Girase/metabolismo , Desenho de Fármacos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Feminino , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/toxicidade , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/toxicidade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/toxicidade
18.
Bioorg Chem ; 96: 103516, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31991322

RESUMO

Synthesis of some new heterocyclic ring systems incorporated pyrimidine and pyridine moieties starting from 1-(furan-2-yl)-3-(thiophen-2-yl) chalcone was achieved. The structure of the new compounds was interpreted by spectral studies and ESI-MS analysis. Antimicrobial investigations of the designated compounds were performed towards some harmful pathogenic microbes. Antimicrobial tests proved that compound 11 unveiled a greater antimicrobial activity than other designed compounds. Docking of compound 11 into active site of DNA gyrase B chain displayed binding-energy of -13.05 kJ mol-1 and distance at 3.18 Ao. Furthermore, docking investigation was approved for the goal compounds into DNA gyrase B chain and exhibiting binding energy extended from -13.05 to -20.48 kJ mol-1.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Piridinas/química , Pirimidinas/química , Anti-Infecciosos/síntese química , Chalconas/química , DNA Girase/química , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
19.
J Biomol Struct Dyn ; 38(6): 1798-1809, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31084271

RESUMO

The rapidly increasing rate of antibiotic resistance is of great concern. Approximately two million deaths result annually from bacterial infections worldwide. Therefore, there is a paramount requirement to develop innovative and novel antibacterial agents with new mechanisms of action and activity against resistant bacterial strains. For this purpose, a set of benzothiazole and N-phenylpyrrolamides derivatives reported as DNA Gyrase B (GyrB) inhibitors were collected from the literature and docked inside the receptor cavity of DNA Gyrase B (PDB ID: 5L3J). The best 10 docked complexes were used to identify novel antibacterial chemical agents through a de novo design approach. Out of initial 300 chemical analogues, the best six analogues were identified using screening with a set of criteria followed by pharmacokinetic analysis. The binding interactions of the best six analogues revealed that all molecules formed a number of critical interactions with catalytic amino residues of DNA Gyrase B with high binding energy. The predicted inhibitory constant biological activity based on binding energy supported the potential of the molecules as DNA Gyrase B ligands. The RMSD, RMSF, and radius of gyration parameters obtained from the 100 ns molecular dynamics simulation study clearly demonstrated that all six analogues were efficient enough to form stable complexes with DNA Gyrase B. High negative binding energy of all ligands obtained from MM-GBSA approach undoubtedly explained the strong affinity toward the DNA Gyrase B. Therefore, the proposed de novo designed molecules can be considered as promising antibacterial chemical agents subject to experimental validation, in vitro.Communicated by Ramaswamy H. Sarma.


Assuntos
Antibacterianos , DNA Girase , Inibidores da Topoisomerase II , Antibacterianos/farmacologia , DNA Girase/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Topoisomerase II/farmacologia
20.
J Enzyme Inhib Med Chem ; 34(1): 1259-1270, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31287341

RESUMO

Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.


Assuntos
Ftalimidas/química , Ftalimidas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ftalimidas/síntese química , Análise Espectral/métodos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA