Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 663
Filtrar
1.
J Pharm Biomed Anal ; 248: 116325, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38959755

RESUMO

The high prevalence of cancer and detrimental side effects associated with many cancer treatments necessitate the search for effective alternative therapies. Natural products are increasingly being recognized and investigated for their potential therapeutic benefits. Scutellaria barbata D. Don (SBD), a plant with potent antitumor properties, has attracted significant interest from oncology researchers. Its primary flavonoid components-scutellarin and luteolin-which have limited oral bioavailability due to poor absorption. This hinders its application for cancer treatment. The gut microbiota, which is considered a metabolic organ, can modulate the biotransformation of compounds, thereby altering their bioavailability and efficacy. In this study, we employed liquid chromatography tandem mass spectrometry (LC-MS/MS 8060) and ion trap-time of flight (LC-MSn-IT-TOF) analysis to investigate the ex vivo metabolism of scutellarin and luteolin by the gut microbiota. Five metabolites and one potential metabolite were identified. We summarized previous studies on their antitumor effects and performed in vitro tumor cell line studies to prove their antitumor activities. The possible key pathway of gut microbiota metabolism in vitro was validated using molecular docking and pure enzyme metabolic experiments. In addition, we explored the antitumor mechanisms of the two components of SBD through network pharmacology, providing a basis for subsequent target identification. These findings expand our understanding of the antitumor mechanisms of SBD. Notably, this study contributes to the existing body of knowledge regarding flavonoid biotransformation by the gut microbiota, highlighting the therapeutic potential of SBD in cancer treatment. Moreover, our results provide a theoretical basis for future in vivo pharmacokinetic studies, aiming to optimize the clinical efficacy of SBD in oncological applications.

2.
Nat Prod Res ; : 1-5, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979980

RESUMO

One new previously undescribed trihydroxy fatty ester (1) and three known aliphatic alkenes (2-4) have been isolated from the rhizomes of Trillium govanianum Wall. ex D.Don. The structures of isolated molecules were elucidated using extensive spectroscopic techniques including NMR, HR-ESI-MS, and FT-IR, respectively. This is the first report on the isolation of compounds 3 and 4 from the Trillium genus. Moreover, through a network pharmacology approach, the therapeutic potential of the isolated molecules was investigated. This analysis revealed that these fatty alkenes can be utilised for managing health conditions such as pneumonitis, inflammatory pain, and endothelial dysfunction.

3.
Front Plant Sci ; 15: 1356723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835863

RESUMO

Fusarium crown rot (FCR) is an important and devastating disease of wheat (Triticum aestivum) caused by the fungus Fusarium pseudograminearum and related pathogens. Using two distinct susceptible cultivars, we investigated the isolation frequencies of F. pseudograminearum and quantified its biomass accumulation and the levels of the associated toxins deoxynivalenol (DON) and DON-3-glucoside (D3G) in inoculated field-grown wheat plants. We detected F. pseudograminearum in stem, peduncle, rachis, and husk tissues, but not in grains, whereas DON and D3G accumulated in stem, rachis, husk, and grain tissues. Disease severity was positively correlated with the frequency of pathogen isolation, F. pseudograminearum biomass, and mycotoxin levels. The amount of F. pseudograminearum biomass and mycotoxin contents in asymptomatic tissue of diseased plants were associated with the distance of the tissue from the diseased internode and the disease severity of the plant. Thus, apparently healthy tissue may harbor F. pseudograminearum and contain associated mycotoxins. This research helps clarify the relationship between F. pseudograminearum occurrence, F. pseudograminearum biomass, and mycotoxin accumulation in tissues of susceptible wheat cultivars with or without disease symptoms, providing information that can lead to more effective control measures.

4.
Toxins (Basel) ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38922131

RESUMO

Endometrial cancer is one of the most common cancer types among women. Many factors can contribute to the development of this disease, including environmental factors and, thus, eating habits. Our study aims to determine the levels of various mycotoxins and their metabolites in the blood serum and endometrial tissue samples of participants with previously proven endometrial cancer and to find possible contributions to cancer development. In the cohort clinical trial, 52 participants aged between 44 and 86 were studied. The participants were divided into two groups: patients or matched controls. All patients had previously histologically diagnosed endometrial cancer. The cancer patients were divided into low-grade endometrioid and low- plus high-grade endometrioid groups. Controls had no history of endometrial malignancy or premalignancy. Blood serum and endometrial tissue samples were obtained from all study patients. We compared the concentrations of total Aflatoxins (Afs), Deoxynivalenol (DON), Ochratoxin-A (OTA), T2-toxin and HT2 toxin (T2/HT2 toxin), Zearalenone (ZEN), alpha-Zearalenol (α-ZOL), and Fumonisin B1 (FB1) in the serum and endometrium between the different study groups. As a result, we can see a significant correlation between the higher levels of Afs and zearalenone and the presence of endometrial cancer. In the case of Afs, DON, OTA, T2/HT2 toxins, ZEN, and alpha-ZOL, we measured higher endometrial concentrations than in serum. Considering the effect of mycotoxins and eating habits on cancer development, our results might lead to further research exploring the relationship between certain mycotoxins and endometrium cancer.


Assuntos
Neoplasias do Endométrio , Micotoxinas , Feminino , Humanos , Neoplasias do Endométrio/sangue , Micotoxinas/sangue , Micotoxinas/análise , Pessoa de Meia-Idade , Idoso , Adulto , Idoso de 80 Anos ou mais , Endométrio/metabolismo , Endométrio/patologia , Estudos de Casos e Controles
5.
Toxins (Basel) ; 16(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38922175

RESUMO

The aim of this study was to evaluate the effectiveness of nine different biological compounds to reduce mycotoxins concentrations. The hypothesis of this study was that a static in vitro gastrointestinal tract model, as an initial screening tool, can be used to simulate the efficacy of Geotrichum fermentans, Rhodotorula rubra, Kluyveromyce marxiamus yeast cell walls and their polysaccharides, red and white clay minerals, and walnuts nutshells claiming to detoxify AFB1, ZEA, DON, and T-2 toxin mycotoxins. Mycotoxin concentrations were analyzed using high-performance liquid chromatography (HPLC) with fluorescent (FLD) and ultraviolet detectors (UV). The greatest effects on reducing mycotoxin concentrations were determined as follows: for AFB1, inserted G. fermentans cell wall polysaccharides and walnut nutshells; for ZEA, inserted R. rubra and G. fermentans cell walls and red clay minerals; for DON, R. rubra cell wall polysaccharides and red clay minerals; and for T-2 toxin, R. rubra cell walls, K. marxianus, and G. fermentans cell wall polysaccharides and walnut nutshells. The present study indicated that selected mycotoxin-detoxifying biological compounds can be used to decrease mycotoxin concentrations.


Assuntos
Argila , Juglans , Micotoxinas , Rhodotorula , Juglans/química , Rhodotorula/metabolismo , Micotoxinas/análise , Micotoxinas/química , Argila/química , Geotrichum/efeitos dos fármacos , Geotrichum/metabolismo , Nozes/química , Silicatos de Alumínio/química , Minerais
6.
J Agric Food Chem ; 72(27): 15176-15189, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943677

RESUMO

Fusarium head blight caused by Fusarium graminearum is a devastating disease in wheat that seriously endangers food security and human health. Previous studies have found that the secondary metabolite phenazine-1-carboxamide produced by biocontrol bacteria inhibited F. graminearum by binding to and inhibiting the activity of histone acetyltransferase Gcn5 (FgGcn5). However, the detailed mechanism of this inhibition remains unknown. Our structural and biochemical studies revealed that phenazine-1-carboxamide (PCN) binds to the histone acetyltransferase (HAT) domain of FgGcn5 at its cosubstrate acetyl-CoA binding site, thus competitively inhibiting the histone acetylation function of the enzyme. Alanine substitution of the residues in the binding site shared by PCN and acetyl-CoA not only decreased the histone acetylation level of the enzyme but also dramatically impacted the development, mycotoxin synthesis, and virulence of the strain. Taken together, our study elucidated a competitive inhibition mechanism of Fusarium fungus by PCN and provided a structural template for designing more potent phenazine-based fungicides.


Assuntos
Proteínas Fúngicas , Fungicidas Industriais , Fusarium , Histona Acetiltransferases , Fenazinas , Doenças das Plantas , Triticum , Fusarium/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/genética , Fenazinas/metabolismo , Fenazinas/farmacologia , Fenazinas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Doenças das Plantas/microbiologia , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/química , Histona Acetiltransferases/antagonistas & inibidores , Triticum/microbiologia , Sítios de Ligação , Acetilação
7.
Food Chem ; 456: 139886, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38870804

RESUMO

Deoxynivalenol (DON) is the most abundant mycotoxin in cereal crops and derived foods and is of great concern in agriculture. Bioremediation strategies have long been sought to minimize the impact of mycotoxin contamination, but few direct and effective enzyme-catalyzed detoxification methods are currently available. In this study, we established a multi-enzymatic cascade reaction and successfully achieved detoxification at double sites: glutathionylation for the C-12,13 epoxide group and epimerization for the C-3 hydroxyl group. This yielded novel derivatives of DON, 3-epi-DON-13-glutathione (3-epi-DON-13-GSH) as well as its by-product, 3-keto-DON-13-GSH, for which precise structures were validated via liquid chromatography-high-resolution tandem mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Both cell viability and DNA synthesis assays demonstrated dramatically decreased cytotoxicity of the double-site modified product 3-epi-DON-13-GSH. These findings provide a promising and urgently needed novel method for addressing the problem of DON contamination in agricultural and industrial settings.

8.
Water Res ; 260: 121924, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896885

RESUMO

Drinking water treatment plants (DWTPs) in China that pioneered the biological activated carbon (BAC) process have reached 10 years of operation. There has been a renewed focus on biofiltration and the performance of old BAC filters for dissolved organic nitrogen (DON) has been poor, requiring replacement and regeneration of the BAC. Therefore, it is necessary to explore a cost-effective way to improve the water quality of the old BAC filters. To address this, low frequency ultrasound is proposed to enhance DON removal efficiency by BAC. In this study, bench and pilot tests were conducted to investigate the effect of low frequency ultrasound on DON removal by 10-year BAC. The results indicated that low frequency ultrasound significantly improved the DON removal rate increased from 15.83 % to 85.87 % and considerably inhibited the nitrogenous disinfection by-products (N-DBPs) formation potential, which was attributed to a decrease in the production of lipid-like, carbohydrate-like, and protein/amino sugar-like DON. The biomass on the BAC was significantly reduced after ultrasound treatment, and it decreased from 349.56∼388.98 nmol P/gBAC to 310.12∼377.63 nmol P/gBAC, enabling the biofilm thickness to decrease and the surface to become sparse and porous, which was conducive to oxygen and nutrients transfer. The Rhizobials associated with microbe-derived DON were stripped away during ultrasound treatment, which reduced microbe-derived DON associated with amino acids. Additionally, ultrasound regulated metabolic pathways, including amino acids, tricarboxylic acid (TCA) cycle, and nucleotide metabolism, to improve the osmotic pressure of the biofilm. In short, low frequency ultrasound treatment can enhance BAC biological properties and effectively remove DON and N-DBPs formation potentials, which provides a viable and promising strategy for improving the safety of drinking water in practice.

9.
Toxicology ; 506: 153868, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906241

RESUMO

Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 µM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated ß-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.

10.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731582

RESUMO

Clinicians often have to face infections caused by microorganisms that are difficult to eradicate due to their resistance and/or tolerance to antimicrobials. Among these pathogens, Pseudomonas aeruginosa causes chronic infections due to its ability to form biofilms on medical devices, skin wounds, ulcers and the lungs of patients with Cystic Fibrosis. In this scenario, the plant world represents an important reservoir of natural compounds with antimicrobial and/or antibiofilm properties. In this study, an extract from the leaves of Combretum micranthum G. Don, named Cm4-p, which was previously investigated for its antimicrobial activities, was assayed for its capacity to inhibit biofilm formation and/or to eradicate formed biofilms. The model strain P. aeruginosa PAO1 and its isogenic biofilm hyperproducer derivative B13 were treated with Cm4-p. Preliminary IR, UV-vis, NMR, and mass spectrometry analyses showed that the extract was mainly composed of catechins bearing different sugar moieties. The phytocomplex (3 g/L) inhibited the biofilm formation of both the PAO1 and B13 strains in a significant manner. In light of the obtained results, Cm4-p deserves deeper investigations of its potential in the antimicrobial field.


Assuntos
Antibacterianos , Biofilmes , Catequina , Combretum , Testes de Sensibilidade Microbiana , Extratos Vegetais , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Catequina/farmacologia , Catequina/química , Combretum/química , Folhas de Planta/química , Açúcares , Humanos
11.
Small ; : e2401315, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747008

RESUMO

Battery-type electrode materials with high capacity, wide potential windows, and good cyclic stability are crucial to breaking through energy storage limitations and achieving high energy density. Herein, a novel 2D-on-2D Al-doped NiCo layered double hydroxide (NiCoAlx LDH) nanosheet arrays with high-mass-loading are grown on a carbon cloth (CC) substrate via a two-step hydro/solvothermal deposition strategy, and the effect of Al doping is employed to modify the deposition behavior, hierarchical morphology, phase stability, and multi-metallic synergistic effect. The optimized NiCoAl0.1 LDH electrode exhibits capacities of 5.43, 6.52, and 7.25 C cm-2 (9.87, 10.88, and 11.15 F cm-2) under 0-0.55, 0-0.60, and 0-0.65 V potential windows, respectively, illustrating clearly the importance of the wide potential window. The differentiated deposition strategy reduces the leaching level of Al3+ cations in alkaline solutions, ensuring excellent cyclic performance (108% capacity retention after 40 000 cycles). The as-assembled NiCoAl0.1 LDH//activated carbon cloth (ACC) hybrid supercapacitor delivers 3.11 C cm-2 at 0-2.0 V, a large energy density of 0.84 mWh cm-2 at a power density of 10.00 mW cm-2, and excellent cyclic stability with ≈135% capacity retention after 150 000 cycles.

12.
Food Res Int ; 187: 114389, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763651

RESUMO

Ochratoxin A (OTA), zearalenone (ZEN), and deoxynivalenol (DON) are mycotoxins whose exposure is associated with various adverse health effects, including cancer and renal disorders, estrogenic effects, and immunosuppressive and gastrointestinal disorders, respectively. Infants (<2 years) are the most vulnerable group to mycotoxins, representing a unique combination of restricted food consumption types, low body weight, lower ability to eliminate toxins, and more future years to accumulate toxins. This study aimed to estimate the infant́s exposure to OTA, DON, and ZEN due to the consumption of milk formula and baby cereals in Chile. Milk formula samples (n = 41) and baby cereals (n = 30) were collected and analyzed using commercial ELISA kits for OTA, DON, and ZEA determination. Exposure was assessed by the Estimated Daily Intake (EDI) approach (mean and worst-case scenario, WCS) with the levels found in a modified Lower Bound (mLB) and Upper Bound (UB); ideal consumption (<6m, 7-12 m, and 13-24 m); adjusted by the weight of each group. The risk was estimated by comparing the EDI with a reference tolerable daily intake or by the margin of exposure (MOE) in the case of OTA. DON and OTA occurrence in infant formula were 34 % and 41 %, respectively. The co-occurrence between these mycotoxins was 22 %. Mycotoxin contents were below LOQ values except for OTA determined in one sample (0.29 ng/ml). No milk formulae were contaminated with ZEN. In the case of baby cereals, the occurrences were 17 % for OTA, 30 % for DON, and 7 % for ZEN, all below LOQ. Co-occurrence was seen in two samples between ZEN and OTA. According to exposure calculations, the MOE for OTA was less than 10,000 in all models for milk formula between 0 to 12 months of age and in the UB and WCS for cereal consumption. Health concerns were observed for DON in the WCS and UB for milk consumption in all ages and only in the UB WCS for cereal consumption. Considering the high consumption of milk formula in these age groups, regulation of OTA and other co-occurring mycotoxins in infant milk and food is strongly suggested.


Assuntos
Exposição Dietética , Grão Comestível , Contaminação de Alimentos , Fórmulas Infantis , Ocratoxinas , Tricotecenos , Zearalenona , Humanos , Zearalenona/análise , Fórmulas Infantis/química , Chile , Grão Comestível/química , Lactente , Tricotecenos/análise , Contaminação de Alimentos/análise , Ocratoxinas/análise , Exposição Dietética/análise , Exposição Dietética/efeitos adversos , Medição de Risco , Recém-Nascido , Alimentos Infantis/análise
13.
Bull Cancer ; 2024 May 15.
Artigo em Francês | MEDLINE | ID: mdl-38755034

RESUMO

Haematopoietic stem cell collection from paediatric donors is a common and life-saving practice, as evidenced by the fact that there is a growing annual number of cases of transplants from minor donors among SFGM-TC centers over the last decade. Still, medical use of human tissue from a healthy and underage donor requires proper regulations and medical management. The guidelines below aim at underlining the importance of pondering the legal, medical and ethical aspects of using stem cells from healthy paediatric donors and stress out the importance of obtaining informed consent at the time of assessing HLA compatibility. Combined medical and psychological assessments are required before the donation, as well as one month later and one year later to ensure of the child's physical and mental wellbeing. Bone marrow harvest under general anaesthetics remains the preferred method of collection for children. Peripheral blood stem cell collection should only be considered for children who will not require a central venous access for collection. We aim at offering guidelines centered on the healthy child donating stem cells and his/her wellbeing, and these should be regularly reviewed as medical practices evolve.

14.
Sci Rep ; 14(1): 10131, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698085

RESUMO

Fusarium head blight (FHB) is a significantly important disease in cereals primarily caused by Fusarium species. FHB control is largely executed through chemical strategies, which are costlier to sustainable wheat production, resulting in leaning towards sustainable sources such as resistance breeding and biological control methods for FHB. The present investigation was aimed at evaluating newly identified bacterial consortium (BCM) as biocontrol agents for FHB and understanding the morpho-physiological traits associated with the disease resistance of spring wheat. Preliminary evaluation through antagonistic plate assay and in vivo assessment indicated that BCM effectively inhibited Fusarium growth in spring wheat, reducing area under disease progress curve (AUDPC) and deoxynivalenol (DON), potentially causing type II and V resistance, and improving single spike yield (SSPY). Endurance to FHB infection with the application of BCM is associated with better sustenance of spike photosynthetic performance by improving the light energy harvesting and its utilization. Correlation and path-coefficient analysis indicated that maximum quantum yield (QY_max) is directly influencing the improvement of SSPY and reduction of grain DON accumulation, which is corroborated by principal component analysis. The chlorophyll fluorescence traits identified in the present investigation might be applied as a phenotyping tool for the large-scale identification of wheat sensitivity to FHB.


Assuntos
Resistência à Doença , Fusarium , Doenças das Plantas , Triticum , Triticum/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Consórcios Microbianos/fisiologia , Tricotecenos/metabolismo , Fotossíntese , Bactérias/metabolismo , Bactérias/genética
15.
Pest Manag Sci ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38817082

RESUMO

BACKGROUND: Fusarium graminearum is a devastating fungal pathogen that poses a significant threat to global wheat production and quality. Control of this toxin-producing pathogen remains a major challenge. This study aimed to isolate strains with antagonistic activity against F. graminearum and at the same time to analyze the synthesis of deoxynivalenol (DON), in order to provide a new basis for the biological control of FHB. RESULTS: Total of 69 microorganisms were isolated from the soil of a wheat-corn crop rotation field, and an antagonistic bacterial strain F12 was identified as Burkholderia pyrrocinia by molecular biology and carbon source utilization. F. graminearum control by strain F12 showed excellent biological activities under laboratory conditions (95.8%) and field testing (63.09%). Meanwhile, the DON content of field-treated wheat grains was detected the results showed that F12 have significantly inhibited of DON, which was further verified by qPCR that F12 produces secondary metabolites that inhibit the expression of DON and pigment-related genes. In addition, the sterile fermentation broth of F12 not only inhibited mycelial growth and spore germination, but also prevented mycelia from producing spores. CONCLUSION: In this study B. pyrrocinia was reported to have good control of FHB and inhibition of DON synthesis. This novel B. pyrrocinia F12 is a promising biological inoculant, providing possibilities for controlling FHB, and a theoretical basis for the development of potential biocontrol agents and biofertilizers for agricultural use. © 2024 Society of Chemical Industry.

16.
Phytochemistry ; 224: 114140, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750709

RESUMO

Eight previously undescribed cevanine-type steroidal alkaloids, cirrhosinones I-N and cirrhosinols A-B, along with five known analogs, were isolated from the bulbs of Fritillaria cirrhosa D. Don. Their structures were elucidated on the basis of comprehensive analysis of HRESIMS, 1D and 2D NMR spectroscopic data, and single-crystal X-ray diffraction analyses. All compounds revealed weak NO inhibitory activities in the LPS-stimulated NR8383 cells at the concentration of 20 µM, with inhibition ratios ranging from 5.1% to 14.3%.


Assuntos
Alcaloides , Fritillaria , Raízes de Plantas , Fritillaria/química , Raízes de Plantas/química , Estrutura Molecular , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Cevanas/química , Cevanas/farmacologia , Cevanas/isolamento & purificação , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Animais , Conformação Molecular , Cristalografia por Raios X , Linhagem Celular , Ratos , Esteroides/química , Esteroides/isolamento & purificação , Esteroides/farmacologia , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Modelos Moleculares
17.
Anal Biochem ; 692: 115572, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38777290

RESUMO

Deoxynivalenol (DON) is a common mycotoxin in food that mainly pollutes grain crops and feeds, such as barley, wheat and corn. DON has caused widespread concern in the field of food and feed safety. In this study, a colorimetric immunoassay was proposed based on the aggregation of gold nanoparticles (AuNPs) due to the decomposition of Mn2+ from gold-coated manganese dioxide (AuNP@MnO2) nanosheets. In this study, 2-(dihydrogen phosphate)-l-ascorbic acid (AAP) was hydrolyzed by alkaline phosphatase (ALP) and converted to ascorbic acid (AA). Then, AuNP@MnO2 was reduced to Mn2+ and AuNPs aggregation occurred. Using the unique optical characteristics of AuNPs and AuNP@MnO2, visible color changes realized simple detection of DON with high sensitivity and portability. With increasing DON content, the color changed more obviously. To quantitatively detect DON, pictures can be taken and the blue value can be read by a smartphone. The detection limit (Ic10) of this method was 0.098 ng mL-1, which was 326 times higher than that of traditional competitive ELISA, and the detection range was 0.177-6.073 ng mL-1. This method exhibited high specificity with no cross-reaction in other structural analogs. The average recovery rate of DON in corn flour samples was 89.1 %-110.2 %, demonstrating the high accuracy and stability of this assay in actual sample detection. Therefore, the colorimetric immunoassay can be used for DON-related food safety monitoring.


Assuntos
Colorimetria , Ouro , Manganês , Nanopartículas Metálicas , Smartphone , Tricotecenos , Colorimetria/métodos , Ouro/química , Tricotecenos/análise , Tricotecenos/química , Nanopartículas Metálicas/química , Imunoensaio/métodos , Manganês/química , Compostos de Manganês/química , Contaminação de Alimentos/análise , Óxidos/química , Limite de Detecção
18.
Antonie Van Leeuwenhoek ; 117(1): 73, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676821

RESUMO

The deoxynivalenol (DON)-degrading bacterium JB1-3-2 T was isolated from a rhizosphere soil sample of cucumber collected from a greenhouse located in Zhenjiang, Eastern China. The JB1-3-2 T strain is a Gram-stain-positive, nonmotile and round actinomycete. Growth was observed at temperatures between 15 and 40 ℃ (optimum, 35 ℃), in the presence of 15% (w/v) NaCl (optimum, 3%), and at pH 3 and 11 (optimum, 7). The major cellular fatty acids identified were anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Genome sequencing revealed a genome size of 4.11 Mb and a DNA G + C content of 72.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the JB1-3-2 T strain was most closely related to type strains of the Oerskovia species, with the highest sequence similarity to Oerskovia turbata NRRL B-8019 T (98.2%), and shared 98.1% sequence identity with other valid type strains of this genus. Digital DNA‒DNA hybridization (dDDH) and average nucleotide identity (ANI) showed 21.8-22.2% and 77.2-77.3% relatedness, respectively, between JB1-3-2 T and type strains of the genus Oerskovia. Based on genotypic, phylogenetic, chemotaxonomic, physiological and biochemical characterization, Oerskovia flava, a novel species in the genus Oerskovia, was proposed, and the type strain was JB1-3-2 T (= CGMCC 1.18555 T = JCM 35248 T). Additionally, this novel strain has a DON degradation ability that other species in the genus Oerskovia do not possess, and glutathione-S-transferase was speculated to be the key enzyme for strain JB1-3-2 T to degrade DON.


Assuntos
Cucumis sativus , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Tricotecenos , Cucumis sativus/microbiologia , Tricotecenos/metabolismo , RNA Ribossômico 16S/genética , Ácidos Graxos/metabolismo , DNA Bacteriano/genética , China , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Genoma Bacteriano
19.
Foods ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611368

RESUMO

Deoxynivalenol (DON), primarily generated by Fusarium species, often exists in agricultural products. It can be transformed to 3-epi-deoxynivalenol (3-epi-DON), with a relatively low toxicity, via two steps. DDH in Pelagibacterium halotolerans ANSP101 was proved to convert DON to 3-keto-deoxynivalenol (3-keto-DON). In the present research, AKR4, a NADPH-dependent aldo/keto reductase from P. halotolerans ANSP101, was identified to be capable of converting 3-keto-DON into 3-epi-DON. Our results demonstrated that AKR4 is clearly a NADPH-dependent enzyme, for its utilization of NADPH is higher than that of NADH. AKR4 functions at a range of pH 5-10 and temperatures of 20-60 °C. AKR4 is able to degrade 89% of 3-keto-DON in 90 min at pH 7 and 50 °C with NADPH as the cofactor. The discovery of AKR4, serving as an enzyme involved in the final step in DON degradation, might provide an option for the final detoxification of DON in food and feed.

20.
Animals (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612278

RESUMO

Reproductive abnormalities have been observed in fallow deer populations in Hungary. We supposed mycotoxin contamination to be one of the possible causes because multi-mycotoxin contamination is known to be dangerous even at low toxin levels, especially for young animals. We investigated the spatial pattern of mycotoxin occurrences and the relationship between maternal and fetal mycotoxin levels. A total of 72 fallow deer embryos and their mothers were sampled in seven forested regions in Hungary in the 2020/2021 hunting season. We analyzed Aflatoxin (AF), Zearalenone (ZEA), Fumonizin B1 (FB1), DON, and T2-toxin concentrations in maternal and fetal livers by ELISA. AF was present in 70% and 82%, ZEA in 41% and 96%, DON in 90% and 98%, T2-toxin in 96% and 85%, and FB1 in 84% and 3% of hind and fetus livers, respectively. All mycotoxins passed into the fetus, but only Fumonizin B1 rarely passed. The individual variability of mycotoxin levels was extremely high, but the spatial differences were moderate. We could not prove a relation between the maternal and fetal mycotoxin concentrations, but we found an accumulation of ZEA and DON in the fetuses. These results reflect the possible threats of mycotoxins to the population dynamics and reproduction of wild fallow deer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA