Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591628

RESUMO

Unsaturated polyester resin (UPR) with excellent flame retardant is mainly obtained by adding large amounts of flame retardants, usually at the expense of mechanical properties. In this work, a reactive flame retardant containing phosphorus and nitrogen (DOPO-N) was successfully synthesized and incorporated in UPR as a crosslinker. The mechanical and flame-retardant properties of UPR composites were enhanced. UPR/30DOPO-N passed a UL-94 V-1 rating with a limiting oxygen index (LOI) of 30.8%. The tensile strength of UPR/30DOPO-N increased by 24.4%. On this basis, a small amount of modified HNTs (VHNTs) was added to further improve the flame-retardant properties of the composite. With the introduction of 3 wt% VHNTs, the composite passed the UL-94 V-0 rating. The peak of heat release rate (PHRR) and total heat release (THR) of it decreased by 60.7% and 48.3%, respectively. Moreover, the detailed flame-retarding mechanism of DOPO-N and VHNTs was investigated by thermogravimetric infrared spectroscopy (TG-IR), Raman spectra, and X-ray photoelectron spectroscopy (XPS). It was found that DOPO-N played a role in quenching the flame in the gas phase and cooperated with VHNTs to enhance the barrier effect in the condensed phase.

2.
Polymers (Basel) ; 16(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475315

RESUMO

Currently, the mechanical performance reduction caused by excessive phosphorus content in the halogen-free flame-retardant EP has been an obstacle to its extensive application. This study presents the effective synthesis of a novel flame-retardant BDD with great efficiency, achieving an optimum phosphorus level of merely 0.25 wt %. The structure of BDD was verified by FTIR, 1H NMR, 31P NMR and XPS spectra. To investigate the flame-retardant properties of BDD, several EPs with various phosphorus levels were synthesized. The addition of phosphorus to the EP significantly increases its LOI value from 25.8% to 33.4% at a phosphorus level of 0.25 wt%. Additionally, the resin achieves a V-0 grade in the UL 94 test. The P-HRR and THR of the modified resin measured by the cone calorimeter are also significantly reduced. At the same time, the addition of a modest quantity of BDD has a minimal impact on the mechanical properties of epoxy resin. This study shows that the removal of hydroxyl groups significantly enhances the fire resistance of phosphate-based flame retardants, thereby providing a novel approach to synthesizing efficient flame retardants.

3.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276710

RESUMO

A set of polyphenylene oxides incorporating DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) functionality, denoted as DOPO-R-PPO, was synthesized by copolymerization of 2,6-dimethylphenol (2,6-DMP) with various DOPO-substituted tetramethyl bisphenol monomers. In the initial step, a Friedel-Crafts acylation reaction was employed to react 2,6-DMP with different acyl chlorides, leading to the formation of ketone derivatives substituted with 2,6-dimethylphenyl groups. Subsequently, the ketones, along with DOPO and 2,6-DMP, underwent a condensation reaction to yield a series of DOPO-substituted bisphenol derivatives. Finally, polymerizations of 2,6-dimethylphenol with these DOPO-substituted bisphenols were carried out in organic solvents using copper(I) bromide/N-butyldimethylamine catalysts (CuBr/DMBA) under a continuous flow of oxygen, yielding telechelic PPO oligomers with DOPO moieties incorporated into the polymer backbone. The chemical structures of the synthesized compounds were characterized using various analytical techniques, including Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), phosphorus nuclear magnetic resonance (31P NMR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). When compared to conventional poly(2,6-dimethyl-1,4-phenylene oxide)s with a similar molecular weight range, all DOPO-PPOs exhibited higher glass transition temperatures, enhanced thermal degradability, and increased char yield formation at 800 °C without compromising solubility in organic solvents.

4.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139917

RESUMO

Transparency is an important property for polymer flame retardants, especially epoxy resin (EP) flame retardants, and flame-retardant epoxy resins that maintain a high transparency and low chromatic aberration play important roles in the optical, lighting, and energy industries. Herein, a DOPO-based flame retardant 6,6'-((sulfonylbis(4,1-phenylene))bis(oxy))bis(dibenzo[c,e][1,2]oxaphosphinine 6-oxide) with a high transparency and low chromatic aberration was prepared via the classical Atherton-Todd reaction and named SBPDOPO. Its chemical structure was characterized with Fourier IR spectroscopy and NMR spectroscopy. An EP loaded with 7 wt% SBPDOPO passed the UL-94 V-0 rating with an LOI value of 32.1%, and the peak heat release rate, total heat release, and total smoke production were reduced by 34.1%, 31.6%, and 27.7%, respectively, compared with those of pure EP. In addition, the addition of SBPDOPO improved the thermal stability, residual mass, and glass transition temperature of the EP. On this basis, the EP containing 7 wt% SBPDOPO maintained a high transparency and low color aberration, with a transmittance of 94% relative to that of pure EP and a color aberration ΔE of 1.63. Finally, the flame-retardant mechanism of SBPDOPO was analyzed, which demonstrated that it exerted both gas-phase and condensed-phase flame-retardant effects, and that SBPDOPO/EP had high potential for application scenarios in which both flame retardancy and transparency are needed. SBPDOPO/EP has great potential for applications requiring both flame retardancy and transparency.

5.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006103

RESUMO

We investigated the performance of cotton fabrics coated with DOPO-HQ and Zr-based Metal-organic Frameworks when exposed to fire. The chemical structure of the cotton fabrics before and after the coating was characterized using FTIR spectroscopy, and the surface morphology of cotton and their combustion residues was probed via scanning electron microscopy. In our experiments, we used flammability tests and thermogravimetric methods to understand the burning behavior of the coated fibers, as well as their thermal stability. The cotton fabrics coated with DOPO-HQ and Zr MOFs exhibited shorter combustion times, had better thermal degradation properties, promoted the creation of heat-insulating layers, and exhibited improved smoke suppression behavior.

6.
Materials (Basel) ; 16(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37297313

RESUMO

Adsorption methods for CO2 capture are characterized by high selectivity and low energy consumption. Therefore, the engineering of solid supports for efficient CO2 adsorption attracts research attention. Modification of mesoporous silica materials with tailor-made organic molecules can greatly improve silica's performance in CO2 capture and separation. In that context, a new derivative of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, possessing an electron-rich condensed aromatic structure and also known for its anti-oxidative properties, was synthesized and applied as a modifying agent of 2D SBA-15, 3D SBA-16, and KIT-6 silicates. The physicochemical properties of the initial and modified materials were studied using nitrogen physisorption and temperature-gravimetric analysis. The adsorption capacity of CO2 was measured in a dynamic CO2 adsorption regime. The three modified materials displayed a higher capacity for CO2 adsorption than the initial ones. Among the studied sorbents, the modified mesoporous SBA-15 silica showed the highest adsorption capacity for CO2 (3.9 mmol/g). In the presence of 1 vol.% water vapor, the adsorption capacities of the modified materials were enhanced. Total CO2 desorption from the modified materials was achieved at 80 °C. The obtained silica materials displayed stable performance in five CO2 adsorption/desorption cycles. The experimental data can be appropriately described by the Yoon-Nelson kinetic model.

7.
Molecules ; 28(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37241813

RESUMO

With the aim to develop polymers with appealing, multifunctional characteristics, a series of polyimides were designed by anchoring 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) units on the main polymer chains containing 1,3,5-triazine and several flexible moieties, such as ether, hexafluoroisopropylidene, or isopropylidene. A detailed study was conducted to establish structure-property correlations, with a focus on the synergistic effectiveness of triazine and DOPO moieties on the overall features of polyimides. The results evidenced good solubility of the polymers in organic solvents, their amorphous nature with short-range regular-packed polymer chains, and high thermal stability with no glass transition temperature below 300 °C. Spectrophotometric measurements revealed the existence of a strong charge transfer complex in these polymers that led to a "black" appearance, which generated broad absorption bands spanning on the overall visible range. Nevertheless, these polymers displayed green light emission associated with 1,3,5-triazine emitter. The electrochemical characteristics of the polyimides in solid state demonstrated their strong n-type doping character induced by three different structural elements with electron-acceptance capability. The useful properties of these polyimides, including optical, thermal, electrochemical, aesthetics, and opaqueness, endow them with several possible applications in the microelectronic field, such as protecting layers for the inner circuits against UV light deterioration.

8.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901747

RESUMO

Bisphenol A type benzoxazine (Ba) monomers and 10-(2, 5-dihydroxyphenyl)-10- hydrogen-9- oxygen-10- phosphine-10- oxide (DOPO-HQ) were employed to prepare flame retardant and heat insulated polybenzoxazine (PBa) composite aerogels. The successful preparation of PBa composite aerogels was confirmed by Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The thermal degradation behavior and flame-retardant properties of the pristine PBa and PBa composite aerogels were investigated with thermogravimetric analysis (TGA) and cone calorimeter. The initial decomposition temperature of PBa decreased slightly after incorporating DOPO-HQ, increasing the char residue amount. The incorporation of 5% DOPO-HQ into PBa led to a decrease of 33.1% at the peak of the heat-release rate and a decrease of 58.7% in the TSP. The flame-retardant mechanism of PBa composite aerogels was investigated by SEM, Raman spectroscopy, and TGA coupled with infrared spectrometry (TG-FTIR). The aerogel has advantages such as a simple synthesis procedure, easy amplification, lightweight, low thermal conductivity, and good flame retardancy.


Assuntos
Benzoxazinas , Retardadores de Chama , Animais , Estro , Temperatura Alta , Fósforo
9.
Polymers (Basel) ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201710

RESUMO

A 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based derivative (PN-DOPO) combined with aluminium phosphates-coated sepiolite (Sep@AlPO4) was used to improve the flame retardance, thermal stability and mechanical performances of poly (ethylene oxide) (PEO)/poly (butylene adipate-co-terephthalate) (PBAT) blends. The synergistic effects of PN-DOPO and Sep@AlPO4 on flame-retarded PEO/PBAT composites were systematically discussed. Results indicated that introducing 5 wt% Sep@AlPO4 with 10 wt% PN-DOPO into PEO/PBAT achieved a V-1 rating for the UL-94 test and increased the limiting oxygen index value to 23.7%. Moreover, the peak heat release rate (p-HRR), average HRR and total heat release values of PEO/PBAT/PN10%/Sep5% composites decreased by 35.6%, 11.0% and 23.0% compared with those of PEO/PBAT, respectively. Thermogravimetric analysis (TGA) results confirmed that PN-DOPO/Sep@AlPO4 enhanced the initial thermal stability and char yield of PEO/PBAT matrix, and TGA/Fourier transform infrared spectrometry results revealed that the composites exhibited the characteristic absorption peaks of phosphorous-containing groups and an increase in gas-phase volatiles during thermal degradation. The morphological structures of the residues indicated that PN-DOPO and Sep@AlPO4 mixtures produced a more dense and continuous char layer on the composite surface during burning. Rheological behaviour revealed that higher complex viscosity and modulus values of PEO/PBAT/PN-DOPO/Sep@AlPO4 sample could also promote the crosslinking network structure of condensed phases during combustion. Furthermore, the PEO/PBAT/PN-DOPO/Sep@AlPO4 composites exhibited superior elongation at break and flexural performance than the PEO/PBAT system. All results demonstrated that the PEO/PBAT system modified with PN-DOPO/Sep@AlPO4 showed remarkable flame retardance, and improved thermal stability and mechanical properties, indicating its potential application in areas requiring fire safety.

10.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36559867

RESUMO

The main concern of materials designed for firefighting protective clothing applications is heat protection, which can be experienced from any uncomfortably hot objects or inner spaces, as well as direct contact with flame. While textile fibers are one of the most important components of clothing, there is a constant need for the development of innovative fire-retardant textile fibers with improved thermal characteristics. Lately, inherently fire-resistant fibers have become very popular to provide better protection for firefighters. In the current study, the electrospinning technique was applied as a versatile method to produce micro-/nano-scaled non-woven fibrous membranes based on various ratios of a poly(ether-ether-ketone) (PEEK) and a phosphorus-containing polyimide. Rheological measurements have been performed on solutions of certain ratios of these components in order to optimize the electrospinning process. FTIR spectroscopy and scanning electron microscopy were used to investigate the chemical structure and morphology of electrospun nanofiber membranes, while thermogravimetric analysis, heat transfer measurements and differential scanning calorimetry were used to determine their thermal properties. The water vapor sorption behavior and mechanical properties of the optimized electrospun nanofiber membranes were also evaluated.

11.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361962

RESUMO

Among the multitude of polymers with carbon-based macromolecular architectures that easily ignite in certain applications where short circuits may occur, polyimide has evolved as a class of polymers with high thermal stability while exhibiting intrinsic flame retardancy at elevated temperatures via a char-forming mechanism. However, high amounts of aromatic rings in the macromolecular backbone are required for these results, which may affect other properties such as film-forming capacity or mechanical properties; thus, much work has been done to structurally derivatize or make hybrid polyimide systems. In this respect, flexible polyimide films (PI(1-4)) containing bulky 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) units have been developed starting from commercial dianhydrides and an aromatic diamine containing two side chain bulky DOPO groups. The chemical structure of PI(1-4)) was characterized by 1H NMR, 13C NMR and 31P NMR spectroscopy. The optical properties, including absorption and luminescence spectra of these polymers, were analyzed. All polyimides containing DOPO derivatives emitted blue light with an emission maxima in the range of 340-445 nm, in solvents such as N,N-dimethylformamide, N-methyl-2-pyrrolidone, chloroform, and N,N-dimethylacetamide, while green light emission (λem = 487 nm for PI-4) was evidenced in a thin-film state. The thermal decomposition mechanism and flame-retardant behavior of the resulting materials were investigated by pyrolysis-gas-chromatography spectrometry (Py-GC), scanning electron microscopy (SEM), EDX maps and FTIR spectroscopy. The residues resulting from the TGA experiments were examined by SEM microscopy images and FTIR spectra to understand the pyrolysis mechanism.


Assuntos
Retardadores de Chama , Retardadores de Chama/análise , Cromatografia Gasosa-Espectrometria de Massas , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Ressonância Magnética
12.
Front Chem ; 10: 1018998, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277341

RESUMO

PET/DIDOPO conjugated flame retardant composites were prepared by melt blending of styrene bridged DOPO (DIDOPO) into polyethylene terephthalate (PET). The flame retardancy, rheological behavior, and thermal degradation behavior of the composite were characterized by vertical combustion test (UL-94), limit oxygen index test (LOI), rotational rheometer, and thermogravimetry (TG). The results showed that the flame retardant composite with V-0 grade was obtained when the amount of DIDOPO is 12.5wt%, and the corresponding LOI value was 56.87% higher than that of PET. The thermogravimetry-fourier infrared spectroscopy (TG-FTIR) test results showed that DIDOPO could promote the degradation of PET/DIDOPO materials, and release phosphorus-containing free radicals to quench the flame, therefore slowing down the combustion process, and mainly playing the key flame retardant role in gas-phase.

13.
Polymers (Basel) ; 14(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745948

RESUMO

Polypropylene (PP), as a general thermoplastic polymer, is broadly used in different fields. However, the high flammability, melt dripping and poor mechanical properties of PP are a constraint to the expansion of its applications. In this paper, PP composites containing a combination of a phenethyl-bridged DOPO derivative (PN-DOPO) and organic montmorillonite (OMMT) were prepared via melt blending. The synergistic effects of PN-DOPO and OMMT on the flame retardancy, thermal stability and mechanical properties of PP composites were investigated systematically. The results showed that 20 wt% addition of PN-DOPO with OMMT improved the flame retardancy of PP composites. In particular, the introduction of 17 wt% PN-DOPO and 3 wt% OMMT increased the LOI values of the PP matrix from 17.2% to 23.6%, and the sample reached the V-0 level and reduced the heat release rate and total heat release. TGA indicated that OMMT could improve the thermal stability of the PP/PN-DOPO blends and promote the char residues of PP systems. Rheological behaviour showed a higher storage modulus, loss modulus and complex viscosity of PP/PN-DOPO/OMMT composites, suggesting a more effective network structure. In addition, the tensile strength, flexural properties and impact strength of the PP/PN-DOPO/OMMT composites actually increased for a good dispersion effect. Combined with the char layer analysis, the introduction of OMMT promoted more continuous and compact structural layers containing an aluminium-silicon barrier and phosphorus-containing carbonaceous char in the condensed phase. OMMT can improve the flame retardancy, thermal stability and mechanical properties of PP, and, thus, PN-DOPO/OMMT blends can serve as an efficient synergistic system for flame-retarded PP composites.

14.
Polymers (Basel) ; 14(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35160595

RESUMO

The DOPO-based flame-retardant additives DOPO-HQ, DOPO-AP and DOPO-Van were synthesized in varying numbers of phenolic hydroxyl groups and amine groups. Moreover, their influence on the polymerization of a bisphenol F-based benzoxazine, as well as the thermal properties of the resulting materials, were studied. All DOPO-based derivatives influenced the polymerization temperature onset with a reduction of up to 20 °C, while thermo-mechanical properties remained high. Surprisingly, phosphorous content below 0.4 wt% significantly improved the reaction against small flames yielding an increase in the limited oxygen index by 2% and a V-0 rating in the UL-94 test. DOPO-HQ proved to be the most effective additive regarding the reaction against small flames at an astonishingly low phosphorous concentration of below 0.1 wt%, whereas DOPO-AP and DOPO-Van simultaneously lowered the polymerization temperature.

15.
Int J Biol Macromol ; 205: 539-552, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35217079

RESUMO

In this study, lignin-based epoxy resins (EP) were fabricated using lignin, phenol and glyoxal as crosslinking reagents. For improving the flame retardancy, a bi-DOPO compound with bi-hydroxyl structure was successfully synthesized, containing excellent quenching and charring capacities. Good pyrolysis behaviors of as-synthesized flame retardant resulted in significant quenching effect via structure decomposition to release PO and PO2 free radicals for capturing reactive H and OH radicals produced from epoxy combustion. With addition of 0.18 wt% phosphorus, epoxy composite (10% LPG-ER-4) passed V-0 rating with high limited oxygen index (LOI) value of 35.2%. Cone calorimeter tests showed that heat release (including heat release rate (HRR) and total heat release (THR)) from combustion was reduced with assistance of flame retardant. Char residue analyses illustrated that bi-hydroxyl structure in DOPO-based flame retardant benefited the formation of char layer with higher compactness and integrity to serve as a protective shell of interior epoxy matrix. Furthermore, exterior pore size of char residue was narrowed or blocked to avoid the release of heat and volatiles generated from combustion. This study provided a feasible method to improve flame retardancy of lignin-based EP and proposed flame-retardant mechanism both in gaseous and solid phases.


Assuntos
Resinas Epóxi , Retardadores de Chama , Resinas Epóxi/química , Lignina/química , Fenóis/química , Fósforo
16.
Polymers (Basel) ; 14(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054651

RESUMO

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.

17.
Materials (Basel) ; 16(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36614510

RESUMO

The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results.

18.
ACS Appl Mater Interfaces ; 13(18): 21876-21887, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33939405

RESUMO

This study presents a novel and facile strategy for fabricating fire-resistant, ultraviolet (UV)-shielding, and tensile-enhanced polylactide (PLA) composites using two-dimensional (2D) MXene (Ti3C2) flakes chemically modified with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO). The thermal and burning performances of PLA composites were demonstrated by the limiting oxygen index, UL-94 test, and cone calorimetry. The UV-shielding and tensile performances were also examined. The results revealed that PLA/Ti3C2-DOPO (3 wt %) displayed a V-0 rating in the UL-94 test. The enhancement against fire hazard was reflected by the significant reduction in the peak heat release rate (33.7%), total heat release (47%), peak CO production (58.8%), and total smoke production (41.7%). The improved fire-safety performance of the composites is attributed to the interplay of catalytic, barrier, and condensed effects of the Ti3C2-DOPO nanosheets in the PLA matrix. PLA/Ti3C2-DOPO also showed an increase (∼9%) in tensile strength and an "Excellent" level (UPF 50+) in the UV-protection assessment. In all, this study introduces a novel chemical modification strategy for 2D MXene flakes to fabricate multifunctional PLA composites, which are promising candidates for next-generation sustainable and protective plastic products.

19.
Polymers (Basel) ; 13(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804277

RESUMO

The aim of this study was to evaluate the antibacterial and antifungal activity, cytotoxicity, leaching, and ecotoxicity of novel flame retardant polyamide 6 (PA6) textile fibers developed by our research group. The textile fibers were produced by the incorporation of flame-retardant bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivative (PHED) in the PA6 matrix during the in situ polymerization process at concentrations equal to 10 and 15 wt% (PA6/10PHED and PA6/15PHED, respectively). Whilst the nanodispersed PHED provided highly efficient flame retardancy, its biological activity led to excellent antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as excellent antifungal activity against Aspergillus niger and Candida albicans. The results confirmed leaching of the PHED, but the tested leachates did not cause any measurable toxic effect to the duckweed Lemna minor. The in vitro cytotoxicity of the leached PHED from the PA6/15PHED sample was confirmed for human cells from adipose tissue in direct and prolonged contact. The targeted biological activity of the organophosphinate flame retardant could be beneficial for the development of PA6 textile materials with multifunctional properties and the low ecotoxicity profile, while the PHED's leaching and cytotoxicity limit their application involving the washing processes and direct contact with the skin.

20.
Chemosphere ; 273: 129658, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33529798

RESUMO

In this study, a novel organic-inorganic hybrid flame retardant 10-(1,4-dicarboxylic acid magnesium salt)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DMMH) was synthesized via neutralization and addition reaction of maleic acid, magnesium hydroxide and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), and subsequently used in an intrinsic flame retardant epoxy resin. The chemical structure and morphology of DMMH were analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Further, the prepared DMMH was combined with ammonium polyphosphate (APP) to form an intumescent flame retardant system. The thermal stability and flame retardance were evaluated by thermogravimetric analysis (TG), UL-94 vertical burning test, limiting oxygen index (LOI) and cone calorimetry. It was observed that the addition of 1.7% DMMH and 5.3% APP led EP-7 to acquire UL-94 V-0 rating, with the limiting oxygen index of 26.0%. As compared with pure EP, the peak heat release rate, total heat release, smoke production rate and total smoke production of the sample was noted to decrease by 54.5%, 35.1%, 43.6% and 38.1%, respectively. In addition, the introduction of DMMH did not negatively impact the mechanical properties of the epoxy resin.


Assuntos
Compostos de Amônio , Retardadores de Chama , Resinas Epóxi , Magnésio , Polifosfatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA