RESUMO
Developmental pluripotency-associated 2 (DPPA2) and DPPA4 are crucial transcription factors involved in maintaining pluripotency in humans and mice. However, the role of DPPA2/4 in bovine extended pluripotent stem cells (bEPSCs) has not been investigated. In this study, a subset of bEPSC-related differentially expressed genes (DEGs), including DPPA2 and DPPA4, was identified based on multiomics data (ATAC-seq and RNA-seq). Subsequent investigations revealed that double overexpression of DPPA2/4 facilitates the reprogramming of bovine fetal fibroblasts (BFFs) into bEPSCs, whereas knockout of DPPA2/4 in BFFs leads to inefficient reprogramming. DPPA2/4 overexpression and knockdown experiments revealed that the pluripotency and proliferation capability of bEPSCs were maintained by promoting the transition from the G1 phase to the S phase of the cell cycle. By activating the PI3K/AKT/GSK3ß/ß-catenin pathway in bEPSCs, DPPA2/4 can increase the nuclear accumulation of ß-catenin, which further upregulates lymphoid enhancer binding factor 1 (LEF1) transcription factor activity. Moreover, DPPA2/4 can also regulate the expression of LEF1 by directly binding to its promoter region. Overall, our results demonstrate that DPPA2/4 promote the reprogramming of BFFs into bEPSCs while also maintaining the pluripotency and proliferation capability of bEPSCs by regulating the PI3K/AKT/GSK3ß/ß-catenin pathway and subsequently activating LEF1. These findings expand our understanding of the gene regulatory network involved in bEPSC pluripotency.
Assuntos
Proteínas Nucleares , Células-Tronco Pluripotentes , Fatores de Transcrição , beta Catenina , Animais , Bovinos , beta Catenina/metabolismo , Proliferação de Células , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Nucleares/metabolismoRESUMO
BACKGROUND: Prenatal alcohol exposure (PAE) affects embryonic development, causing a variable fetal alcohol spectrum disorder (FASD) phenotype with neuronal disorders and birth defects. We hypothesize that early alcohol-induced epigenetic changes disrupt the accurate developmental programming of embryo and consequently cause the complex phenotype of developmental disorders. To explore the etiology of FASD, we collected unique biological samples of 80 severely alcohol-exposed and 100 control newborns at birth. METHODS: We performed genome-wide DNA methylation (DNAm) and gene expression analyses of placentas by using microarrays (EPIC, Illumina) and mRNA sequencing, respectively. To test the manifestation of observed PAE-associated DNAm changes in embryonic tissues as well as potential biomarkers for PAE, we examined if the changes can be detected also in white blood cells or buccal epithelial cells of the same newborns by EpiTYPER. To explore the early effects of alcohol on extraembryonic placental tissue, we selected 27 newborns whose mothers had consumed alcohol up to gestational week 7 at maximum to the separate analyses. Furthermore, to explore the effects of early alcohol exposure on embryonic cells, human embryonic stem cells (hESCs) as well as hESCs during differentiation into endodermal, mesodermal, and ectodermal cells were exposed to alcohol in vitro. RESULTS: DPPA4, FOXP2, and TACR3 with significantly decreased DNAm were discovered-particularly the regulatory region of DPPA4 in the early alcohol-exposed placentas. When hESCs were exposed to alcohol in vitro, significantly altered regulation of DPPA2, a closely linked heterodimer of DPPA4, was observed. While the regulatory region of DPPA4 was unmethylated in both control and alcohol-exposed hESCs, alcohol-induced decreased DNAm similar to placenta was seen in in vitro differentiated mesodermal and ectodermal cells. Furthermore, common genes with alcohol-associated DNAm changes in placenta and hESCs were linked exclusively to the neurodevelopmental pathways in the enrichment analysis, which emphasizes the value of placental tissue when analyzing the effects of prenatal environment on human development. CONCLUSIONS: Our study shows the effects of early alcohol exposure on human embryonic and extraembryonic cells, introduces candidate genes for alcohol-induced developmental disorders, and reveals potential biomarkers for prenatal alcohol exposure.
Assuntos
Transtornos do Espectro Alcoólico Fetal , Proteínas Nucleares , Efeitos Tardios da Exposição Pré-Natal , Feminino , Humanos , Recém-Nascido , Gravidez , Biomarcadores/metabolismo , Cromatina , Deficiências do Desenvolvimento , Etanol/toxicidade , Transtornos do Espectro Alcoólico Fetal/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Placenta/metabolismoRESUMO
Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.
Assuntos
Cromatina/genética , Desenvolvimento Embrionário/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ativação Transcricional/genética , Zigoto/crescimento & desenvolvimentoRESUMO
How maternal factors in oocytes initiate zygotic genome activation (ZGA) remains elusive in mammals, partly due to the challenge of de novo identification of key factors using scarce materials. Two-cell (2C)-like cells have been widely used as an in vitro model in order to understand mouse ZGA and totipotency because of their expression of a group of two-cell embryo-specific genes and their simplicity for genetic manipulation. Recent studies indicate that DPPA2 and DPPA4 are required for establishing the 2C-like state in mouse embryonic stem cells in a DUX-dependent manner. These results suggest that DPPA2 and DPPA4 are essential maternal factors that regulate Dux and ZGA in embryos. By analyzing maternal knockout and maternal-zygotic knockout embryos, we unexpectedly found that DPPA2 and DPPA4 are dispensable for Dux activation, ZGA and pre-implantation development. Our study suggests that 2C-like cells do not fully recapitulate two-cell embryos in terms of regulation of two-cell embryo-specific genes, and, therefore, caution should be taken when studying ZGA and totipotency using 2C-like cells as the model system.
Assuntos
Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias Murinas/citologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Herança Materna/genética , Camundongos , Camundongos Knockout , Células-Tronco Embrionárias Murinas/metabolismo , Oócitos/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismoRESUMO
Many gene networks are shared between pluripotent stem cells and cancer; a concept exemplified by several DPPA factors such as DPPA2 and DPPA4, which are highly and selectively expressed in stem cells but also found to be reactivated in cancer. Despite their striking expression pattern, for many years the function of DPPA2 and DPPA4 remained a mystery; knockout of Dppa2 and Dppa4 did not affect pluripotency, but caused lung and skeletal defects late in development, long after Dppa2 and Dppa4 expression had been turned off. A number of recent papers have further clarified and defined the roles of these important factors, identifying roles in priming the chromatin and maintaining developmental competency through regulating both H3K4me3 and H3K27me3 at bivalent chromatin domains, and acting to remodel chromatin and facilitate reprogramming of somatic cells to induced pluripotency. These findings highlight an important regulatory role for DPPA2 and DPPA4 at the transitional boundary between pluripotency and differentiation and may have relevance to the functions of DPPA2 and 4 in the context of cancer cells as well.
Assuntos
Linhagem da Célula/genética , Epigenômica , Neoplasias/genética , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Humanos , Células-Tronco Pluripotentes/metabolismoRESUMO
Dysregulation of the ubiquitin-proteasome pathway is strongly associated with cancer initiation and progression. Speckle-type POZ(pox virus and zinc finger protein) protein(SPOP) is an adapter protein of CUL3-based E3 ubiquitin ligase complexes. Gene expression profiling from the Cancer Genome Atlas (TCGA) suggests that SPOP is downregulated in testicular germ cell tumors (TGCTs), but the specific contribution of this protein remains to be explored. In this study, we show that the germ line-specific factor DPPA2 was identified as a proteolytic substrate for the SPOP-CUL3-RBX1 E3 ubiquitin-ligase complex. SPOP specifically binds to a SPOP-binding consensus (SBC) degron located in DPPA2 and targets DPPA2 for degradation via the ubiquitin-proteasome pathway. SPOP downregulation increases the expression of pluripotency markers OCT4 and Nanog but decreases that of early differentiation marker gene Fst. This effect is partly dependent on its activity toward DPPA2. In addition, the dysregulation of SPOP-DPPA2 axis contributes to the malignant transformation phenotypes of TGCT cells.
Assuntos
Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Neoplasias Testiculares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Proteínas Nucleares/genética , Proteólise , Proteínas Repressoras/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologiaRESUMO
Developmental pluripotency-associated 2 (Dppa2) and developmental pluripotency-associated 4 (Dppa4) as positive drivers were helpful for transcriptional regulation of zygotic genome activation (ZGA). Here, we systematically assessed the cooperative interplay of Dppa2 and Dppa4 in regulating cell pluripotency and found that simultaneous overexpression of Dppa2/4 can make induced pluripotent stem cells closer to embryonic stem cells (ESCs). Compared with other pluripotency transcription factors, Dppa2/4 can regulate majorities of signaling pathways by binding on CG-rich region of proximal promoter (0-500 bp), of which 85% and 77% signaling pathways were significantly activated by Dppa2 and Dppa4, respectively. Notably, Dppa2/4 also can dramatically trigger the decisive signaling pathways for facilitating ZGA, including Hippo, MAPK and TGF-beta signaling pathways and so on. At last, we found alkaline phosphatase, placental-like 2 (Alppl2) was completely silenced when Dppa2 and 4 single- or double-knockout in ESC, which is consistent with Dux. Moreover, Alppl2 was significantly activated in mouse 2-cell embryos and 4-8 cells stage of human embryos, further predicted that Alppl2 was directly regulated by Dppa2/4 as a ZGA candidate driver to facilitate pre-embryonic development.
Assuntos
Ilhas de CpG , Genoma Humano , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Zigoto/metabolismo , Animais , Blastocisto/metabolismo , Linhagem Celular , Humanos , Camundongos , Proteínas Nucleares/genética , Fatores de Transcrição/genéticaRESUMO
The concept of cellular plasticity is particularly apt in early embryonic development, where there is a tug-of-war between the stability and flexibility of cell identity. This balance is controlled in part through epigenetic mechanisms. Epigenetic plasticity dictates how malleable cells are to change by adjusting the potential to initiate new transcriptional programmes. The higher the plasticity of a cell, the more readily it can adapt and change its identity in response to external stimuli such as differentiation cues. Epigenetic plasticity is regulated in part through the action of epigenetic priming factors which establish this permissive epigenetic landscape at genomic regulatory elements to enable future transcriptional changes. Recent studies on the DNA binding proteins Developmental Pluripotency Associated 2 and 4 (Dppa2/4) support their roles as epigenetic priming factors in facilitating cell fate transitions. Here, using Dppa2/4 as a case study, the concept of epigenetic plasticity and molecular mechanism of epigenetic priming factors will be explored. Understanding how epigenetic priming factors function is key not only to improve our understanding of the tight control of development, but also to give insights into how this goes awry in diseases of cell identity, such as cancer.
Assuntos
Plasticidade Celular , Epigênese Genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Cromatina/metabolismo , Ilhas de CpG , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica , Genoma , Humanos , CamundongosRESUMO
Post-translational modification by SUMO is a key regulator of cell identity. In mouse embryonic fibroblasts (MEFs), SUMO impedes reprogramming to pluripotency, while in embryonic stem cells (ESCs), it represses the emergence of totipotent-like cells, suggesting that SUMO targets distinct substrates to preserve somatic and pluripotent states. Using MS-based proteomics, we show that the composition of endogenous SUMOylomes differs dramatically between MEFs and ESCs. In MEFs, SUMO2/3 targets proteins associated with canonical SUMO functions, such as splicing, and transcriptional regulators driving somatic enhancer selection. In contrast, in ESCs, SUMO2/3 primarily modifies highly interconnected repressive chromatin complexes, thereby preventing chromatin opening and transitioning to totipotent-like states. We also characterize several SUMO-modified pluripotency factors and show that SUMOylation of Dppa2 and Dppa4 impedes the conversion to 2-cell-embryo-like states. Altogether, we propose that rewiring the repertoire of SUMO target networks is a major driver of cell fate decision during embryonic development.
Assuntos
Cromatina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Sumoilação , Animais , Diferenciação Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Especificidade por Substrato , Fatores de Transcrição/metabolismoRESUMO
Zygotic genome activation (ZGA) is an essential transcriptional event in embryonic development that coincides with extensive epigenetic reprogramming. Complex manipulation techniques and maternal stores of proteins preclude large-scale functional screens for ZGA regulators within early embryos. Here, we combined pooled CRISPR activation (CRISPRa) with single-cell transcriptomics to identify regulators of ZGA-like transcription in mouse embryonic stem cells, which serve as a tractable, in vitro proxy of early mouse embryos. Using multi-omics factor analysis (MOFA+) applied to â¼200,000 single-cell transcriptomes comprising 230 CRISPRa perturbations, we characterized molecular signatures of ZGA and uncovered 24 factors that promote a ZGA-like response. Follow-up assays validated top screen hits, including the DNA-binding protein Dppa2, the chromatin remodeler Smarca5, and the transcription factor Patz1, and functional experiments revealed that Smarca5's regulation of ZGA-like transcription is dependent on Dppa2. Together, our single-cell transcriptomic profiling of CRISPRa-perturbed cells provides both system-level and molecular insights into the mechanisms that orchestrate ZGA.
Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Epigênese Genética/genética , Genoma/genética , Transcriptoma/genética , Zigoto/metabolismo , HumanosRESUMO
Cloned animals generated by somatic cell nuclear transfer (SCNT) have been reported for many years; however, SCNT is extremely inefficient, and zygotic genome activation (ZGA) is required for SCNT-mediated somatic cell reprogramming. To identify candidate factors that facilitate ZGA in SCNT-mediated reprogramming, we performed siRNA-repressor and mRNA-inducer screenings, which reveal Dux, Dppa2, and Dppa4 as key factors enhancing ZGA in SCNT. We show that direct injection of ZGA inducers has no significant effect on SCNT blastocyst formation; however, following the establishment of an inducible Dux transgenic mouse model, we demonstrate that transient overexpression of Dux not only improves SCNT efficiency but also increases that of chemically induced pluripotent stem cell reprogramming. Moreover, transcriptome profiling reveals that Dux-treated SCNT embryos are similar to fertilized embryos. Furthermore, transient overexpression of Dux combined with inactivation of DNA methyltransferases (Dnmts) further promotes the full embryonic development of SCNT-derived animals. These findings enhance our understanding of ZGA-regulator function in somatic reprogramming.
Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Blastocisto , Reprogramação Celular/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Genoma , Camundongos , Proteínas Nucleares , Técnicas de Transferência Nuclear , Fatores de Transcrição/genética , ZigotoRESUMO
After fertilization of the transcriptionally silent oocyte, expression from both parental chromosomes is launched through zygotic genome activation (ZGA), occurring in the mouse at the 2-cell (2C) stage. Among the first elements to be transcribed are the Dux gene, the product of which induces a wide array of ZGA genes, and a subset of evolutionary recent LINE-1 retrotransposons that regulate chromatin accessibility in the early embryo. The maternally inherited factors that activate Dux and LINE-1 transcription have so far remained unknown. Mouse embryonic stem cells (mESCs) recapitulate some aspects of ZGA in culture, owing to their ability to cycle through a 2C-like stage when Dux, its target genes, and LINE-1 integrants are expressed. Here, we identify the paralog proteins DPPA2 and DPPA4 as necessary for the activation of Dux and LINE-1 expression in mESCs. Since their encoding RNAs are maternally transmitted to the zygote, it is likely that these factors are important upstream mediators of murine ZGA.
Assuntos
Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Camundongos , Oócitos/metabolismo , Retroelementos/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Zigoto/metabolismoRESUMO
The molecular regulation of zygotic genome activation (ZGA) in mammals remains an exciting area of research. Primed mouse embryonic stem cells contain a rare subset of "2C-like" cells that are epigenetically and transcriptionally similar to the two-cell embryo and thus represent an in vitro approximation for studying ZGA transcription regulation. Recently, the transcription factor Dux, expressed in the minor wave of ZGA, was described to activate many downstream ZGA transcripts. However, it remains unknown what upstream maternal factors initiate ZGA in either a Dux-dependent or Dux-independent manner. Here we performed a candidate-based overexpression screen, identifying, among others, developmental pluripotency-associated 2 (Dppa2) and Dppa4 as positive regulators of 2C-like cells and transcription of ZGA genes. In the germline, promoter DNA demethylation coincides with expression of Dppa2 and Dppa4, which remain expressed until embryonic day 7.5 (E7.5), when their promoters are remethylated. Furthermore, Dppa2 and Dppa4 are also expressed during induced pluripotent stem cell (iPSC) reprogramming at the time that 2C-like transcription transiently peaks. Through a combination of overexpression, knockdown, knockout, and rescue experiments together with transcriptional analyses, we show that Dppa2 and Dppa4 directly regulate the 2C-like cell population and associated transcripts, including Dux and the Zscan4 cluster. Importantly, we teased apart the molecular hierarchy in which the 2C-like transcriptional program is initiated and stabilized. Dppa2 and Dppa4 require Dux to initiate 2C-like transcription, suggesting that they act upstream by directly regulating Dux. Supporting this, ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that Dppa2 and Dppa4 bind to the Dux promoter and gene body and drive its expression. Zscan4c is also able to induce 2C-like cells in wild-type cells but, in contrast to Dux, can no longer do so in Dppa2/4 double-knockout cells, suggesting that it may act to stabilize rather than drive the transcriptional network. Our findings suggest a model in which Dppa2/4 binding to the Dux promoter leads to Dux up-regulation and activation of the 2C-like transcriptional program, which is subsequently reinforced by Zscan4c.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Genoma/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Zigoto , Animais , Cromatina/metabolismo , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias , Epigênese Genética/genética , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Camundongos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/genéticaRESUMO
INTRODUCTION: Colorectal cancer (CRC) is one of the most important common causes of cancer-related death globally and reorganization of regulatory mechanisms controlling initiation, progression and metastasis of the CRC is critical to improve the prognosis, diagnosis and effective therapeutic treatment of the patients. One of the newly identified pluripotency genes which is expressed specifically in pluripotent stem cells is developmental pluripotency-associated 2 (DPPA2). It may play important roles in the maintenance of pluripotency of ESCs and is associated with abnormal cell growth and cancer formation. METHODS: Protein expression of DPPA2 was specifically analyzed in tumors and their margin normals of colorectal epithelium in 50 new cases CRC patients by immunohistochemical staining. RESULTS: DPPA2 protein was significantly overexpressed in 60% of samples (30 of 50, P<0.01). This level of protein expression was significantly correlated to the depth of tumor invasion (p=0.047) and the stage of tumor progression (p=0.028). DISCUSSION: Due to existence of transcriptional linkage between DPPA2/Nanog and OCT4 in mouse ESCs, our results suggest that a pluripotency transcriptional network consisting of SALL4/OCT4/DPPA2/Nanog, as similar as ESCs, is activated in CRC which not only play essential roles in maintenance of stemness state and self-renewal characteristics of tumor cells, but also in progression of CRC cells through advanced stages leading to increase depth of tumor cell invasion. CONCLUSION: DPPA2 protein expression is correlated with different indices of poor prognosis and may be introduced as a new therapeutic marker in adjuvant therapy of colorectal cancer.
Assuntos
Neoplasias Colorretais/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Células-Tronco Pluripotentes/metabolismo , Idoso , Animais , Proteínas de Ciclo Celular , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Prognóstico , Fatores de TranscriçãoRESUMO
Maintenance of nuclear architecture is crucial for gene regulation, cell proliferation and tissue development. However, during every open mitosis and meiosis, chromosomes are exposed to cytoskeletal forces until they are fully reassembled into mature nuclei. Here we discuss our recent study of nuclear assembly in Xenopus egg extracts, where we showed that the DNA binding protein Developmental pluripotency associated 2 (Dppa2) directly inhibits microtubule polymerization during nuclear formation, and that this is essential for normal nuclear shape and replication. We explore mechanisms by which microtubule dynamics could regulate nuclear formation and morphology, and discuss the importance of both spatial and temporal regulation of microtubules in this process. Moreover, expression of Dppa2 is limited to the early embryo and pluripotent tissues, and we highlight the specific demands of mitosis in these often rapidly dividing cells, in which telophase nuclear assembly must be expedited and may facilitate developmental changes in nuclear architecture.
Assuntos
Núcleo Celular/ultraestrutura , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Cromossomos/genética , Replicação do DNA , Feminino , Meiose , Mitose , Proteínas Nucleares/genética , Xenopus/genética , Proteínas de Xenopus/genéticaRESUMO
In order to identify novel pluripotency-related oncogenes, an expression screen for oncogenic foci-inducing genes within a retroviral human embryonic stem cell cDNA library was conducted. From this screen, we identified not only known oncogenes but also intriguingly the key pluripotency factor, DPPA4 (developmental pluripotency-associated four) that encodes a DNA binding SAP domain-containing protein. DPPA4 has not been previously identified as an oncogene but is highly expressed in embryonal carcinomas, pluripotent germ cell tumors, and other cancers. DPPA4 is also mutated in some cancers. In direct transformation assays, we validated that DPPA4 is an oncogene in both mouse 3T3 cells and immortalized human dermal fibroblasts. Overexpression of DPPA4 generates oncogenic foci (sarcoma cells) and causes anchorage-independent growth. The in vitro transformed cells also give rise to tumors in immunodeficient mice. Furthermore, functional analyses indicate that both the DNA-binding SAP domain and the histone-binding C-terminal domain are critical for the oncogenic transformation activity of DPPA4. Downregulation of DPPA4 in E14 mouse embryonic stem cells and P19 mouse embryonic carcinoma cells causes decreased cell proliferation in each case. In addition, DPPA4 overexpression induces cell proliferation through genes related to regulation of G1/S transition. Interestingly, we observed similar findings for family member DPPA2. Thus, we have identified a new family of pluripotency-related oncogenes consisting of DPPA2 and DPPA4. Our findings have important implications for stem cell biology and tumorigenesis.