Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Diagnostics (Basel) ; 14(18)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39335734

RESUMO

Background: The outstanding capabilities of modern Positron Emission Tomography (PET) to highlight small tumor lesions and provide pathological function assessment are at peril from image quality degradation caused by respiratory and cardiac motion. However, the advent of the long axial field-of-view (LAFOV) scanners with increased sensitivity, alongside the precise time-of-flight (TOF) of modern PET systems, enables the acquisition of ultrafast time resolution images, which can be used for estimating and correcting the cyclic motion. Methods: 0.25 s so-called [18F]FDG PET histo image series were generated in the scope of for detecting respiratory and cardiac frequency estimates applicable for performing device-less data-driven gated image reconstructions. The frequencies of the cardiac and respiratory motion were estimated for 18 patients using Short Time Fourier Transform (STFT) with 20 s and 30 s window segments, respectively. Results: The Fourier analysis provided time points usable as input to the gated reconstruction based on eight equally spaced time gates. The cardiac investigations showed estimates in accordance with the measured pulse oximeter references (p = 0.97) and a mean absolute difference of 0.4 ± 0.3 beats per minute (bpm). The respiratory frequencies were within the expected range of 10-20 respirations per minute (rpm) in 16 out of 18 patients. Using this setup, the analysis of three patients with visible lung tumors showed an increase in tumor SUVmax and a decrease in tumor volume compared to the non-gated reconstructed image. Conclusions: The method can provide signals that were applicable for gated reconstruction of both cardiac and respiratory motion, providing a potential increased diagnostic accuracy.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39118964

RESUMO

Positron Emission Tomography (PET) is a powerful medical imaging technique widely used for detection and monitoring of disease. However, PET imaging can be adversely affected by patient motion, leading to degraded image quality and diagnostic capability. Hence, motion gating schemes have been developed to monitor various motion sources including head motion, respiratory motion, and cardiac motion. The approaches for these techniques have commonly come in the form of hardware-driven gating and data-driven gating, where the distinguishing aspect is the use of external hardware to make motion measurements vs. deriving these measures from the data itself. The implementation of these techniques helps correct for motion artifacts and improves tracer uptake measurements. With the great impact that these methods have on the diagnostic and quantitative quality of PET images, much research has been performed in this area, and this paper outlines the various approaches that have been developed as applied to whole-body PET imaging.

3.
Phys Med Biol ; 69(17)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38959903

RESUMO

Objective.Respiratory motion correction is beneficial in positron emission tomography (PET), as it can reduce artefacts caused by motion and improve quantitative accuracy. Methods of motion correction are commonly based on a respiratory trace obtained through an external device (like the real time position management system) or a data driven method, such as those based on dimensionality reduction techniques (for instance principal component analysis (PCA)). PCA itself being a linear transformation to the axis of greatest variation. Data driven methods have the advantage of being non-invasive, and can be performed post-acquisition. However, their main downside being that they are adversely affected by the tracer kinetics of the dynamic PET acquisition. Therefore, they are mostly limited to static PET acquisitions. This work seeks to extend on existing PCA-based data-driven motion correction methods, to allow for their applicability to dynamic PET imaging.Approach.The methods explored in this work include; a moving window approach (similar to the Kinetic Respiratory Gating method from Schleyeret al(2014)), extrapolation of the principal component from later time points to earlier time points, and a method to score, select, and combine multiple respiratory components. The resulting respiratory traces were evaluated on 22 data sets from a dynamic [18F]-FDG study on patients with idiopathic pulmonary fibrosis. This was achieved by calculating their correlation with a surrogate signal acquired using a real time position management system.Main results.The results indicate that all methods produce better surrogate signals than when applying conventional PCA to dynamic data (for instance, a higher correlation with a gold standard respiratory trace). Extrapolating a late time point principal component produced more promising results than using a moving window. Scoring, selecting, and combining components held benefits over all other methods.Significance.This work allows for the extraction of a surrogate signal from dynamic PET data earlier in the acquisition and with a greater accuracy than previous work. This potentially allows for numerous other methods (for instance, respiratory motion correction) to be applied to this data (when they otherwise could not be previously used).


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia por Emissão de Pósitrons , Análise de Componente Principal , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Fatores de Tempo , Respiração , Movimento
4.
EJNMMI Phys ; 11(1): 42, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691232

RESUMO

BACKGROUND: Respiratory motion artefacts are a pitfall in thoracic PET/CT imaging. A source of these motion artefacts within PET images is the CT used for attenuation correction of the images. The arbitrary respiratory phase in which the helical CT ( CT helical ) is acquired often causes misregistration between PET and CT images, leading to inaccurate attenuation correction of the PET image. As a result, errors in tumour delineation or lesion uptake values can occur. To minimise the effect of motion in PET/CT imaging, a data-driven gating (DDG)-based motion match (MM) algorithm has been developed that estimates the phase of the CT helical , and subsequently warps this CT to a given phase of the respiratory cycle, allowing it to be phase-matched to the PET. A set of data was used which had four-dimensional CT (4DCT) acquired alongside PET/CT. The 4DCT allowed ground truth CT phases to be generated and compared to the algorithm-generated motion match CT (MMCT). Measurements of liver and lesion margin positions were taken across CT images to determine any differences and establish how well the algorithm performed concerning warping the CT helical to a given phase (end-of-expiration, EE). RESULTS: Whilst there was a minor significance in the liver measurement between the 4DCT and MMCT ( p = 0.045 ), no significant differences were found between the 4DCT or MMCT for lesion measurements ( p = 1.0 ). In all instances, the CT helical was found to be significantly different from the 4DCT ( p < 0.001 ). Consequently, the 4DCT and MMCT can be considered equivalent with respect to warped CT generation, showing the DDG-based MM algorithm to be successful. CONCLUSION: The MM algorithm successfully enables the phase-matching of a CT helical to the EE of a ground truth 4DCT. This would reduce the motion artefacts caused by PET/CT registration without requiring additional patient dose (required for a 4DCT).

5.
J Nucl Cardiol ; 30(6): 2773-2789, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37758961

RESUMO

BACKGROUND: Absolute quantitative myocardial perfusion SPECT requires addressing of aleatory and epistemic uncertainties in conjunction with providing image quality sufficient for lesion detection and characterization. Iterative reconstruction methods enable the mitigation of the root causes of image degradation. This study aimed to determine the feasibility of a new SPECT/CT method with integrated corrections attempting to enable absolute quantitative cardiac imaging (xSPECT Cardiac; xSC). METHODS: We compared images of prototype xSC and conventional SPECT (Flash3DTM) acquired at rest from 56 patients aged 71 ± 12 y with suspected coronary heart disease. The xSC prototype comprised list-mode acquisitions with continuous rotation and subsequent iterative reconstructions with retrospective electrocardiography (ECG) gating. Besides accurate image formation modeling, patient-specific CT-based attenuation and energy window-based scatter correction, additionally we applied mitigation for patient and organ motion between views (inter-view), and within views (intra-view) for both the gated and ungated reconstruction. We then assessed image quality, semiquantitative regional values, and left ventricular function in the images. RESULTS: The quality of all xSC images was acceptable for clinical purposes. A polar map showed more uniform distribution for xSC compared with Flash3D, while lower apical count and higher defect contrast of myocardial infarction (p = 0.0004) were observed on xSC images. Wall motion, 16-gate volume curve, and ejection fraction were at least acceptable, with indication of improvements. The clinical prospectively gated method rejected beats ≥20% in 6 patients, whereas retrospective gating used an average of 98% beats, excluding 2% of beats. We used the list-mode data to create a product equivalent prospectively gated dataset. The dataset showed that the xSC method generated 18% higher count data and images with less noise, with comparable functional variables of volume and LVEF (p = ns). CONCLUSIONS: Quantitative myocardial perfusion imaging with the list-mode-based prototype xSPECT Cardiac is feasible, resulting in images of at least acceptable image quality.


Assuntos
Imagem de Perfusão do Miocárdio , Humanos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Respiração , Arritmias Cardíacas , Processamento de Imagem Assistida por Computador
6.
Phys Med Biol ; 68(18)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37619585

RESUMO

Objective.Multiple algorithms have been proposed for data driven gating (DDG) in single photon emission computed tomography (SPECT) and have successfully been applied to myocardial perfusion imaging (MPI). Application of DDG to acquisition types other than SPECT MPI has not been demonstrated so far, as limitations and pitfalls of current methods are unknown.Approach.We create a comprehensive set of phantoms simulating the influence of different motion artifacts, view angles, moving objects, contrast, and count levels in SPECT. We perform Monte Carlo simulation of the phantoms, allowing the characterization of DDG algorithms using quantitative metrics derived from the data and evaluate the Center of Light (COL) and Laplacian Eigenmaps methods as sample DDG algorithms.Main results.View angle, object size, count rate density, and contrast influence the accuracy of both DDG methods. Moreover, the ability to extract the respiratory motion in the phantom was shown to correlate with the contrast of the moving feature to the background, the signal to noise ratio, and the noise in the data.Significance.We showed that reporting the average correlation to an external physical reference signal per acquisition is not sufficient to characterize DDG methods. Assessing DDG methods on a view-by-view basis using the simulations and metrics from this work could enable the identification of pitfalls of current methods, and extend their application to acquisitions beyond SPECT MPI.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Algoritmos , Artefatos , Benchmarking
7.
J Nucl Med Technol ; 51(1): 32-37, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36750380

RESUMO

Respiration gating is used in PET to prevent image quality degradation due to respiratory effects. In this study, we evaluated a type of data-driven respiration gating for continuous bed motion, OncoFreeze AI, which was implemented to improve image quality and the accuracy of semiquantitative uptake values affected by respiratory motion. Methods: 18F-FDG PET/CT was performed on 32 patients with lung lesions. Two types of respiration-gated images (OncoFreeze AI with data-driven respiration gating, device-based amplitude-based OncoFreeze with elastic motion compensation) and ungated images (static) were reconstructed. For each image, we calculated SUV and metabolic tumor volume (MTV). The improvement rate (IR) from respiration gating and the contrast-to-noise ratio (CNR), which indicates the improvement in image noise, were also calculated for these indices. IR was also calculated for the upper and lower lobes of the lung. As OncoFreeze AI assumes the presence of respiratory motion, we examined quantitative accuracy in regions where respiratory motion was not present using a 68Ge cylinder phantom with known quantitative accuracy. Results: OncoFreeze and OncoFreeze AI showed similar values, with a significant increase in SUV and decrease in MTV compared with static reconstruction. OncoFreeze and OncoFreeze AI also showed similar values for IR and CNR. OncoFreeze AI increased SUVmax by an average of 18% and decreased MTV by an average of 25% compared with static reconstruction. From the IR results, both OncoFreeze and OncoFreeze AI showed a greater IR from static reconstruction in the lower lobe than in the upper lobe. OncoFreeze and OncoFreeze AI increased CNR by 17.9% and 18.0%, respectively, compared with static reconstruction. The quantitative accuracy of the 68Ge phantom, assuming a region of no respiratory motion, was almost equal for the static reconstruction and OncoFreeze AI. Conclusion: OncoFreeze AI improved the influence of respiratory motion in the assessment of lung lesion uptake to a level comparable to that of the previously launched OncoFreeze. OncoFreeze AI provides more accurate imaging with significantly larger SUVs and smaller MTVs than static reconstruction.


Assuntos
Neoplasias Pulmonares , Técnicas de Imagem de Sincronização Respiratória , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Respiração , Tomografia por Emissão de Pósitrons/métodos , Pulmão , Movimento (Física) , Fluordesoxiglucose F18 , Técnicas de Imagem de Sincronização Respiratória/métodos
8.
Eur J Hybrid Imaging ; 6(1): 33, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309636

RESUMO

BACKGROUND: Quality and reproducibility of radiomics studies are essential requirements for the standardisation of radiomics models. As recent data-driven respiratory gating (DDG) [18F]-FDG has shown superior diagnostic performance in lung cancer, we evaluated the impact of DDG on the reproducibility of radiomics features derived from [18F]-FDG PET/CT in comparison to free-breathing flow (FB) imaging. METHODS: Twenty four lung nodules from 20 patients were delineated. Radiomics features were derived on FB flow PET/CT and on the corresponding DDG reconstruction using the QuantImage v2 platform. Lin's concordance factor (Cb) and the mean difference percentage (DIFF%) were calculated for each radiomics feature using the delineated nodules which were also classified by anatomical localisation and volume. Non-reproducible radiomics features were defined as having a bias correction factor Cb < 0.8 and/or a mean difference percentage DIFF% > 10. RESULTS: In total 141 features were computed on each concordance analysis, 10 of which were non-reproducible on all pulmonary lesions. Those were first-order features from Laplacian of Gaussian (LoG)-filtered images (sigma = 1 mm): Energy, Kurtosis, Minimum, Range, Root Mean Squared, Skewness and Variance; Texture features from Gray Level Cooccurence Matrix (GLCM): Cluster Prominence and Difference Variance; First-order Standardised Uptake Value (SUV) feature: Kurtosis. Pulmonary lesions located in the superior lobes had only stable radiomics features, the ones from the lower parts had 25 non-reproducible radiomics features. Pulmonary lesions with a greater size (defined as long axis length > median) showed a higher reproducibility (9 non-reproducible features) than smaller ones (20 non-reproducible features). CONCLUSION: Calculated on all pulmonary lesions, 131 out of 141 radiomics features can be used interchangeably between DDG and FB PET/CT acquisitions. Radiomics features derived from pulmonary lesions located inferior to the superior lobes are subject to greater variability as well as pulmonary lesions of smaller size.

9.
J Appl Clin Med Phys ; 23(5): e13619, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35481961

RESUMO

Data driven respiratory gating (DDG) in positron emission tomography (PET) imaging extracts respiratory waveforms from the acquired PET data obviating the need for dedicated external devices. DDG performance, however, degrades with decreasing detected number of coincidence counts. In this paper, we assess the clinical impact of reducing injected activity on a new DDG algorithm designed for PET data acquired with continuous bed motion (CBM_DDG) by evaluating CBM_DDG waveforms, tumor quantification, and physician's perception of motion blur in resultant images. Forty patients were imaged on a Siemens mCT scanner in CBM mode. Reduced injected activity was simulated by generating list mode datasets with 50% and 25% of the original data (100%). CBM_DDG waveforms were compared to that of the original data over the range between the aortic arch and the center of the right kidney using the Pearson correlation coefficient (PCC). Tumor quantification was assessed by comparing the maximum standardized uptake value (SUVmax) and peak SUV (SUVpeak) of reconstructed images from the various list mode datasets using elastic motion deblurring (EMDB) reconstruction. Perceived motion blur was assessed by three radiologists of one lesion per patient on a continuous scale from no motion blur (0) to significant motion blur (3). The mean PCC of the 50% and 25% dataset waveforms was 0.74 ± 0.18 and 0.59 ± 0.25, respectively. In comparison to the 100% datasets, the mean SUVmax increased by 2.25% (p = 0.11) for the 50% datasets and by 3.91% (p = 0.16) for the 25% datasets, while SUVpeak changes were within ±0.25%. Radiologist evaluations of motion blur showed negligible changes with average values of 0.21, 0.3, and 0.28 for the 100%, 50%, and 25% datasets. Decreased injected activities degrades the resultant CBM_DDG respiratory waveforms; however this decrease has minimal impact on quantification and perceived image motion blur.


Assuntos
Neoplasias , Técnicas de Imagem de Sincronização Respiratória , Humanos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Neoplasias/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos
10.
EJNMMI Res ; 12(1): 16, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347465

RESUMO

BACKGROUND: This study examines the clinical feasibility and impact of implementing a fully automated whole-body PET protocol with data-driven respiratory gating in patients with a broad range of oncological and non-oncological pathologies 592 FDG PET/CT patients were prospectively included. 200 patients with lesions in the torso were selected for further analysis, and ungated (UG), belt gated (BG) and data-driven gating (DDG) images were reconstructed. All images were reconstructed using the same data and without prolonged acquisition time for gated images. Images were quantitatively analysed for lesion uptake and metabolic volume, complemented by a qualitative analysis of visual lesion detection. In addition, the impact of gating on treatment response evaluation was evaluated in 23 patients with malignant lymphoma. RESULTS: Placement of the belt needed for BG was associated with problems in 27% of the BG scans, whereas no issues were reported using DDG imaging. For lesion quantification, DDG and BG images had significantly greater SUV values and smaller volumes than UG. The physicians reported notable image blurring in 44% of the UG images that was problematic for clinical evaluation in 4.5% of cases. CONCLUSION: Respiratory motion compensation using DDG is readily integrated into clinical routine and produce images with more accurate and significantly greater SUV values and smaller metabolic volumes. In our broad cohort of patients, the physicians overwhelmingly preferred gated over ungated images, with a slight preference for DDG images. However, even in patients with malignant disease in the torso, no additional diagnostic information was obtained by the gated images that could not be derived from the ungated images.

11.
Phys Med Biol ; 67(8)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35313286

RESUMO

Objective. Data-driven gating (DDG) can address patient motion issues and enhance PET quantification but suffers from increased image noise from utilization of <100% of PET data. Misregistration between DDG-PET and CT may also occur, altering the potential benefits of gating. Here, the effects of PET acquisition time and CT misregistration were assessed with a combined DDG-PET/DDG-CT technique.Approach. In the primary PET bed with lesions of interest and likely respiratory motion effects, PET acquisition time was extended to 12 min and a low-dose cine CT was acquired to enable DDG-CT. Retrospective reconstructions were created for both non-gated (NG) and DDG-PET using 30 s to 12 min of PET data. Both the standard helical CT and DDG-CT were used for attenuation correction of DDG-PET data. SUVmax, SUVpeak, and CNR were compared for 45 lesions in the liver and lung from 27 cases.Main results. For both NG-PET (p= 0.0041) and DDG-PET (p= 0.0028), only the 30 s acquisition time showed clear SUVmaxbias relative to the 3 min clinical standard. SUVpeakshowed no bias at any change in acquisition time. DDG-PET alone increased SUVmaxby 15 ± 20% (p< 0.0001), then was increased further by an additional 15 ± 29% (p= 0.0007) with DDG-PET/CT. Both 3 min and 6 min DDG-PET had lesion CNR statistically equivalent to 3 min NG-PET, but then increased at 12 min by 28 ± 48% (p= 0.0022). DDG-PET/CT at 6 min had comparable counts to 3 min NG-PET, but significantly increased CNR by 39 ± 46% (p< 0.0001).Significance. 50% counts DDG-PET did not lead to inaccurate or biased SUV-increased SUV resulted from gating. Improved registration from DDG-CT was equally as important as motion correction with DDG-PET for increasing SUV in DDG-PET/CT. Lesion detectability could be significantly improved when DDG-PET used equivalent counts to NG-PET, but only when combined with DDG-CT in DDG-PET/CT.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Técnicas de Imagem de Sincronização Respiratória , Humanos , Movimento (Física) , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
12.
EJNMMI Phys ; 8(1): 64, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34453630

RESUMO

BACKGROUND: Data-driven gating (DDG) can improve PET quantitation and alleviate many issues with patient motion. However, misregistration between DDG-PET and CT may occur due to the distinct temporal resolutions of PET and CT and can be mitigated by DDG-CT. Here, the effects of misregistration and respiratory motion on PET quantitation and lesion segmentation were assessed with a new DDG-PET/CT method. METHODS: A low-dose cine-CT was acquired in misregistered regions to enable both average CT (ACT) and DDG-CT. The following were compared: (1) baseline PET/CT, (2) PET/ACT (attenuation correction, AC = ACT), (3) DDG-PET (AC = helical CT), and (4) DDG-PET/CT (AC = DDG-CT). For DDG-PET, end-expiration (EE) data were derived from 50% of the total PET data at 30% from end-inspiration. For DDG-CT, EE phase CT data were extracted from cine-CT data by lung Hounsfield unit (HU) value and body contour. A total of 91 lesions from 16 consecutive patients were assessed for changes in standard uptake value (SUV), lesion glycolysis (LG), lesion volume, centroid-to-centroid distance (CCD), and DICE coefficients. RESULTS: Relative to baseline PET/CT, median changes in SUVmax ± σ for all 91 lesions were 20 ± 43%, 26 ± 23%, and 66 ± 66%, respectively, for PET/ACT, DDG-PET, and DDG-PET/CT. Median changes in lesion volume were 0 ± 58%, - 36 ± 26%, and - 26 ± 40%. LG for individual lesions increased for PET/ACT and decreased for DDG-PET, but was not different for DDG-PET/CT. Changes in mean HU from baseline PET/CT were dramatic for most lesions in both PET/ACT and DDG-PET/CT, especially for lesions with mean HU < 0 at baseline. CCD and DICE were both affected more by motion correction with DDG-PET than improved registration with ACT or DDG-CT. CONCLUSION: As misregistration becomes more prominent, the impact of motion correction with DDG-PET is diminished. The potential benefits of DDG-PET toward accurate lesion segmentation and quantitation could only be fully realized when combined with DDG-CT. These results impress upon the necessity of ensuring both misregistration and motion correction are accounted for together to optimize the clinical utility of PET/CT.

13.
Phys Med Biol ; 66(11)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33910170

RESUMO

We propose a deep learning-based data-driven respiratory phase-matched gated-PET attenuation correction (AC) method that does not need a gated-CT. The proposed method is a multi-step process that consists of data-driven respiratory gating, gated attenuation map estimation using maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm, and enhancement of the gated attenuation maps using convolutional neural network (CNN). The gated MLAA attenuation maps enhanced by the CNN allowed for the phase-matched AC of gated-PET images. We conducted a non-rigid registration of the gated-PET images to generate motion-free PET images. We trained the CNN by conducting a 3D patch-based learning with 80 oncologic whole-body18F-fluorodeoxyglucose (18F-FDG) PET/CT scan data and applied it to seven regional PET/CT scans that cover the lower lung and upper liver. We investigated the impact of the proposed respiratory phase-matched AC of PET without utilizing CT on tumor size and standard uptake value (SUV) assessment, and PET image quality (%STD). The attenuation corrected gated and motion-free PET images generated using the proposed method yielded sharper organ boundaries and better noise characteristics than conventional gated and ungated PET images. A banana artifact observed in a phase-mismatched CT-based AC was not observed in the proposed approach. By employing the proposed method, the size of tumor was reduced by 12.3% and SUV90%was increased by 13.3% in tumors with larger movements than 5 mm. %STD of liver uptake was reduced by 11.1%. The deep learning-based data-driven respiratory phase-matched AC method improved the PET image quality and reduced the motion artifacts.


Assuntos
Artefatos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Algoritmos , Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Movimento , Tomografia por Emissão de Pósitrons
14.
EJNMMI Res ; 11(1): 33, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33788025

RESUMO

AIM: The aim of this prospective study was to evaluate a data-driven gating software's performance, in terms of identifying the respiratory signal, comparing [68Ga]Ga-DOTATOC and [18F]FDG examinations. In addition, for the [68Ga]Ga-DOTATOC examinations, tracer uptake quantitation and liver lesion detectability were assessed. METHODS: Twenty-four patients with confirmed or suspected neuroendocrine tumours underwent whole-body [68Ga]Ga-DOTATOC PET/CT examinations. Prospective DDG was applied on all bed positions and respiratory motion correction was triggered automatically when the detected respiratory signal exceeded a certain threshold (R value ≥ 15), at which point the scan time for that bed position was doubled. These bed positions were reconstructed with quiescent period gating (QPG), retaining 50% of the total coincidences. A respiratory signal evaluation regarding the software's efficacy in detecting respiratory motion for [68Ga]Ga-DOTATOC was conducted and compared to [18F]FDG data. Measurements of SUVmax, SUVmean, and tumour volume were performed on [68Ga]Ga-DOTATOC PET and compared between gated and non-gated images. RESULTS: The threshold of R ≥ 15 was exceeded and gating triggered on mean 2.1 bed positions per examination for [68Ga]Ga-DOTATOC as compared to 1.4 for [18F]FDG. In total, 34 tumours were evaluated in a quantitative analysis. An increase of 25.3% and 28.1%, respectively, for SUVmax (P < 0.0001) and SUVmean (P < 0.0001), and decrease of 21.1% in tumour volume (P < 0.0001) was found when DDG was applied. CONCLUSIONS: High respiratory signal was exclusively detected in bed positions where respiratory motion was expected, indicating reliable performance of the DDG software on [68Ga]Ga-DOTATOC PET/CT. DDG yielded significantly higher SUVmax and SUVmean values and smaller tumour volumes, as compared to non-gated images.

15.
J Nucl Med ; 61(11): 1678-1683, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32245898

RESUMO

A data-driven method for respiratory gating in PET has recently been commercially developed. We sought to compare the performance of the algorithm with an external, device-based system for oncologic 18F-FDG PET/CT imaging. Methods: In total, 144 whole-body 18F-FDG PET/CT examinations were acquired, with a respiratory gating waveform recorded by an external, device-based respiratory gating system. In each examination, 2 of the bed positions covering the liver and lung bases were acquired with a duration of 6 min. Quiescent-period gating retaining approximately 50% of coincidences was then able to produce images with an effective duration of 3 min for these 2 bed positions, matching the other bed positions. For each examination, 4 reconstructions were performed and compared: data-driven gating (DDG) (we use the term DDG-retro to distinguish that we did not use the real-time R-threshold-based application of DDG that is available within the manufacturer's product), external device-based gating (real-time position management (RPM)-gated), no gating but using only the first 3 min of data (ungated-matched), and no gating retaining all coincidences (ungated-full). Lesions in the images were quantified and image quality scored by a radiologist who was masked to the method of data processing. Results: Compared with the other reconstruction options, DDG-retro increased the SUVmax and decreased the threshold-defined lesion volume. Compared with RPM-gated, DDG-retro gave an average increase in SUVmax of 0.66 ± 0.1 g/mL (n = 87, P < 0.0005). Although the results from the masked image evaluation were most commonly equivalent, DDG-retro was preferred over RPM-gated in 13% of examinations, whereas the opposite occurred in just 2% of examinations. This was a significant preference for DDG-retro (P = 0.008, n = 121). Liver lesions were identified in 23 examinations. Considering this subset of data, DDG-retro was ranked superior to ungated-full in 6 of 23 (26%) cases. Gated reconstruction using the external device failed in 16% of examinations, whereas DDG-retro always provided a clinically acceptable image. Conclusion: In this clinical evaluation, DDG-retro provided performance superior to that of the external device-based system. For most examinations the performance was equivalent, but DDG-retro had superior performance in 13% of examinations, leading to a significant preference overall.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Técnicas de Imagem de Sincronização Respiratória/métodos , Algoritmos , Humanos
17.
EJNMMI Phys ; 6(1): 3, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30627803

RESUMO

PET imaging has been, and continues to be, an evolving diagnostic technology. In recent years, the modernizing digital landscape has opened new opportunities for data-driven innovation. One such facet has been data-driven motion correction (DDMC) in PET. As both research and industry propel this technology forward, we can recognize prospects and opportunities for further development. The concept of clinical practicality is supported by DDMC approaches-it is what sets them apart from traditional hardware-driven motion correction strategies that have largely not gained acceptance in routine diagnostic PET; the ease of use of DDMC may help propel acceptance of motion correction solutions in clinical practice. As we reflect on the present field, we should consider that DDMC can be made even more practical, and likely more impactful, if further developed to fit within a real-time acquisition framework. This vision for development is not new, but has been made more feasible with contemporary electronics, and has begun to be revisited in contemporary literature. The opportunities for development lie on a new forefront of innovation where medical physics integrates with engineering, data science, and modern computing capacities. Real-time DDMC is a systems integration challenge, and achieving it will require cooperation between hardware and software developers, and likely academia and industry. While challenges for development do exist, it is likely that we will see real-time DDMC come to fruition in the coming years. This effort may establish groundwork for developing similar innovations in the emerging digital innovation age.

18.
EJNMMI Res ; 9(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30607651

RESUMO

BACKGROUND: We aimed to evaluate the clinical robustness of a commercially developed data-driven respiratory gating algorithm based on principal component analysis, for use in routine PET imaging. METHODS: One hundred fifty-seven adult FDG PET examinations comprising a total of 1149 acquired bed positions were used for the assessment. These data are representative of FDG scans currently performed at our institution. Data were acquired for 4 min/bed position (3 min/bed for legs). The data-driven gating (DDG) algorithm was applied to each bed position, including those where minimal respiratory motion was expected. The algorithm provided a signal-to-noise measure of respiratory-like frequencies within the data, denoted as R. Qualitative evaluation was performed by visual examination of the waveforms, with each waveform scored on a 3-point scale by two readers and then averaged (score S of 0 = no respiratory signal, 1 = some respiratory-like signal but indeterminate, 2 = acceptable signal considered to be respiratory). Images were reconstructed using quiescent period gating and compared with non-gated images reconstructed with a matched number of coincidences. If present, the SUVmax of a well-defined lesion in the thorax or abdomen was measured and compared between the two reconstructions. RESULTS: There was a strong (r = 0.86) and significant correlation between R and scores S. Eighty-six percent of waveforms with R ≥ 15 were scored as acceptable for respiratory gating. On average, there were 1.2 bed positions per patient examination with R ≥ 15. Waveforms with high R and S were found to originate from bed positions corresponding to the thorax and abdomen: 90% of waveforms with R ≥ 15 had bed centres in the range 5.6 cm superior to 27 cm inferior from the dome of the liver. For regions where respiratory motion was expected to be minimal, R tended to be < 6 and S tended to be 0. The use of DDG significantly increased the SUVmax of focal lesions, by an average of 11% when considering lesions in bed positions with R ≥ 15. CONCLUSIONS: The majority of waveforms with high R corresponded to the part of the patient where respiratory motion was expected. The waveforms were deemed suitable for respiratory gating when assessed visually, and when used were found to increase SUVmax in focal lesions.

19.
Med Phys ; 45(7): 3205-3213, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29782653

RESUMO

PURPOSE: Data-driven gating (DDG) approaches for positron emission tomography (PET) are interesting alternatives to conventional hardware-based gating methods. In DDG, the measured PET data themselves are utilized to calculate a respiratory signal, that is, subsequently used for gating purposes. The success of gating is then highly dependent on the statistical quality of the PET data. In this study, we investigate how this quality determines signal noise and thus motion resolution in clinical PET scans using a center-of-mass-based (COM) DDG approach, specifically with regard to motion management of target structures in future radiotherapy planning applications. METHODS: PET list mode datasets acquired in one bed position of 19 different radiotherapy patients undergoing pretreatment [18 F]FDG PET/CT or [18 F]FDG PET/MRI were included into this retrospective study. All scans were performed over a region with organs (myocardium, kidneys) or tumor lesions of high tracer uptake and under free breathing. Aside from the original list mode data, datasets with progressively decreasing PET statistics were generated. From these, COM DDG signals were derived for subsequent amplitude-based gating of the original list mode file. The apparent respiratory shift d from end-expiration to end-inspiration was determined from the gated images and expressed as a function of signal-to-noise ratio SNR of the determined gating signals. This relation was tested against additional 25 [18 F]FDG PET/MRI list mode datasets where high-precision MR navigator-like respiratory signals were available as reference signal for respiratory gating of PET data, and data from a dedicated thorax phantom scan. RESULTS: All original 19 high-quality list mode datasets demonstrated the same behavior in terms of motion resolution when reducing the amount of list mode events for DDG signal generation. Ratios and directions of respiratory shifts between end-respiratory gates and the respective nongated image were constant over all statistic levels. Motion resolution d/dmax could be modeled as d/dmax=1-e-1.52(SNR-1)0.52, with dmax as the actual respiratory shift. Determining dmax from d and SNR in the 25 test datasets and the phantom scan demonstrated no significant differences to the MR navigator-derived shift values and the predefined shift, respectively. CONCLUSIONS: The SNR can serve as a general metric to assess the success of COM-based DDG, even in different scanners and patients. The derived formula for motion resolution can be used to estimate the actual motion extent reasonably well in cases of limited PET raw data statistics. This may be of interest for individualized radiotherapy treatment planning procedures of target structures subjected to respiratory motion.


Assuntos
Movimento , Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Razão Sinal-Ruído , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas
20.
Curr Radiopharm ; 11(2): 79-85, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29676240

RESUMO

BACKGROUND AND OBJECTIVE: Motion due to patient's breathing can introduce heavy bias in PET/CT, both in image quality and quantitation. This paper is a review of the main technical solutions available to manage movement in PET/CT studies: a) Respiratory Gated (RG), b) Motion Free (MF), c) End Expiration (EE), d) Banana Artefact Management (BAM) and e) Data Driven Gating (DDG). METHODS: The most diffused solutions (RG, MF and EE) are based on LIST mode acquisition of a PET Field of View (4D FOV), centered on the anatomical region of interest; to link PET data not only to time and to spatial position but also to the corresponding breathing phase, the synchronized acquisition of the patient's breathing curve is performed by an external tracking device. Different commercial tools to track and to record patient breathing cycle are available to associate the internal organ motion with a measurable external parameter; for example these systems can measure the pressure on a chest elastic belt, the air flow trough patient nose, the breath-in and breath-out air temperature or the markers movement on the thorax/ abdominal region. Recently DDG techniques are developed to correct respiratory motion without the help of external motion tracking devices and to obtain a comparable result to that based on standard RG protocols. RESULTS: The final result of an RG or DDG protocol is a sequence of 3D images showing organs and lesions movement; using the other motion management options a single 3D motion-free image is obtained without motion artefacts and degradation. Compared to the previously described options the BAM solution is not a real motion management protocol but just a Banana Artefact correction technique obtained using an Attenuation Correction Map calculated merging the Whole Body Helical CT with a Cine CT on the diaphragm area. CONCLUSION: The motion management in PET/CT imaging shows benefits in terms of image quality, quantification and lesion detectability and it is useful both in diagnostic and radiotherapy planning.


Assuntos
Movimento , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA