Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 830, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037470

RESUMO

Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.


Assuntos
Materiais Biocompatíveis , Pé Diabético , Matriz Extracelular , Cicatrização , Cicatrização/efeitos dos fármacos , Humanos , Matriz Extracelular/metabolismo , Animais , Pé Diabético/terapia
2.
Int Dent J ; 74(3): 403-417, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494389

RESUMO

The decellularised extracellular matrix (dECM) of in vitro cell culture is a naturally derived biomaterial formed by the removal of cellular components. The compositions of molecules in the extracellular matrix (ECM) differ depending on various factors, including the culture conditions. Cell-derived ECM provides a 3-dimensional structure that has a complex influence on cell signalling, which in turn affects cell survival and differentiation. This review describes the effects of dECM derived from mesenchymal stem cells (MSCs) on cell responses, including cell migration, cell proliferation, and cell differentiation in vitro. Published articles were searched in the PubMed databases in 2005 to 2022, with assigned keywords (MSCs and decellularisation and cell culture). The 41 articles were reviewed, with the following criteria. (1) ECM was produced exclusively from MSCs; (2) decellularisation processes were performed; and (3) the dECM production was discussed in terms of culture systems and specific supplementations that are suitable for creating the dECM biomaterials. The dECM derived from MSCs supports cell adhesion, enhances cell proliferation, and promotes cell differentiation. Importantly, dECM derived from dental MSCs shows promise in regenerative dentistry applications. Therefore, the literature strongly supports cell-based dECMs as a promising option for innovative tissue engineering approaches for regenerative medicine.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Engenharia Tecidual , Humanos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Medicina Regenerativa , Matriz Extracelular Descelularizada , Matriz Extracelular , Movimento Celular , Adesão Celular , Materiais Biocompatíveis , Técnicas de Cultura de Células
3.
J Adv Res ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38237768

RESUMO

BACKGROUND: The tendon or ligament is attached to the bone by a triphasic but continuous area of heterogeneous tissue called the tendon-bone interface (TBI). The rapid and functional regeneration of TBI is challenging owing to its complex composition and difficulty in self-healing. The development of new technologies, such as decellularization, has shown promise in the regeneration of TBI. Several ex vivo and in vivo studies have shown that decellularized grafts and decellularized biomaterial scaffolds achieved better efficacy in enhancing TBI healing. However further information on the type of review that is available is needed. AIM OF THE REVIEW: In this review, we discuss the current application of decellularization biomaterials in promoting TBI healing and the possible mechanisms involved. With this work, we would like to reveal how tissues or biomaterials that have been decellularized can improve tendon-bone healing and to provide a theoretical basis for future related studies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW: Decellularization is an emerging technology that utilizes various chemical, enzymatic and/or physical strategies to remove cellular components from tissues while retaining the structure and composition of the extracellular matrix (ECM). After decellularization, the cellular components of the tissue that cause an immune response are removed, while various biologically active biofactors are retained. This review further explores how tissues or biomaterials that have been decellularized improve TBI healing.

4.
J Tissue Eng ; 14: 20417314231219813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143931

RESUMO

Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.

5.
Front Immunol ; 14: 1150416, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37261363

RESUMO

Introduction: Boiling histotripsy (BH) is a promising High Intensity Focused Ultrasound (HIFU) technique that can be used to mechanically fractionate solid tumours at the HIFU focus noninvasively, promoting tumour immunity. Because of the occurrence of shock scattering phenomenon during BH process, the treatment accuracy of BH is, however, somewhat limited. To induce more localised and selective tissue destruction, the concept of pressure modulation has recently been proposed in our previous in vitro tissue phantom study. The aim of the present study was therefore to investigate whether this newly developed histotripsy approach termed pressure-modulated shockwave histotripsy (PSH) can be used to induce localised mechanical tissue fractionation in in vivo animal model. Methods: In the present study, 8 Sprague Dawley rats underwent the PSH treatment and were sacrificed immediately after the exposure for morphological and histological analyses (paraffin embedded liver tissue sections were stained with H&E and MT). Partially exteriorised rat's left lateral liver lobe in vivo was exposed to a 2.0 MHz HIFU transducer with peak positive (P +) and negative (P -) pressures of 89.1 MPa and -14.6 MPa, a pulse length of 5 to 34 ms, a pressure modulation time at 4 ms where P + and P - decreased to 29.9 MPa and - 9.6 MPa, a pulse repetition frequency of 1 Hz, a duty cycle of 1% and number of pulses of 1 to 20. Three lesions were produced on each animal. For comparison, the same exposure condition but no pressure modulation was also employed to create a number of lesions in the liver. Results and Discussion: Experimental results showed that a partial mechanical destruction of liver tissue in the form of an oval in the absence of thermal damage was clearly observed at the HIFU focus after the PSH exposure. With a single pulse length of 7 ms, a PSH lesion created in the liver was measured to be a length of 1.04 ± 0.04 mm and a width of 0.87 ± 0.21 mm which was 2.37 times in length (p = 0.027) and 1.35 times in width (p = 0.1295) smaller than a lesion produced by no pressure modulation approach (e.g., BH). It was also observed that the length of a PSH lesion gradually grew towards the opposite direction to the HIFU source along the axial direction with the PSH pulse length, eventually leading to the generation of an elongated lesion in the liver. In addition, our experimental results demonstrated the feasibility of inducing partial decellularisation effect where liver tissue was partially destructed with intact extracellular matrix (i.e., intact fibrillar collagen) with the shortest PSH pulse length. Taken together, these results suggest that PSH could be used to induce a highly localised tissue fractionation with a desired degree of mechanical damage from complete tissue fractionation to tissue decellularisation through controlling the dynamics of boiling bubbles without inducing the shock scattering effect.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias , Animais , Ratos , Ratos Sprague-Dawley , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Fígado , Imagens de Fantasmas
6.
World J Hepatol ; 15(2): 151-179, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36926238

RESUMO

Liver transplantation is the only curative therapy for end stage liver disease, but is limited by the organ shortage, and is associated with the adverse consequences of immunosuppression. Repopulation of decellularised whole organ scaffolds with appropriate cells of recipient origin offers a theoretically attractive solution, allowing reliable and timely organ sourcing without the need for immunosuppression. Decellularisation methodologies vary widely but seek to address the conflicting objectives of removing the cellular component of tissues whilst keeping the 3D structure of the extra-cellular matrix intact, as well as retaining the instructive cell fate determining biochemicals contained therein. Liver scaffold recellularisation has progressed from small rodent in vitro studies to large animal in vivo perfusion models, using a wide range of cell types including primary cells, cell lines, foetal stem cells, and induced pluripotent stem cells. Within these models, a limited but measurable degree of physiologically significant hepatocyte function has been reported with demonstrable ammonia metabolism in vivo. Biliary repopulation and function have been restricted by challenges relating to the culture and propagations of cholangiocytes, though advances in organoid culture may help address this. Hepatic vasculature repopulation has enabled sustainable blood perfusion in vivo, but with cell types that would limit clinical applications, and which have not been shown to have the specific functions of liver sinusoidal endothelial cells. Minority cell groups such as Kupffer cells and stellate cells have not been repopulated. Bioengineering by repopulation of decellularised scaffolds has significantly progressed, but there remain significant experimental challenges to be addressed before therapeutic applications may be envisaged.

7.
Bioengineering (Basel) ; 10(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36671629

RESUMO

Congenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD. Though tissue engineering has produced several synthetic scaffolds, most of them failed to be successfully translated in this life-endangering clinical scenario, and currently, biological scaffolds are the most extensively used. This review aims to thoroughly summarise the existing biological scaffolds for the treatment of paediatric CHD, categorised as homografts and xenografts, and present the preclinical and clinical studies. Fixation as well as techniques of decellularisation will be reported, highlighting the importance of these approaches for the successful implantation of biological scaffolds that avoid prosthetic rejection. Additionally, cardiac scaffolds for paediatric CHD can be implanted as acellular prostheses, or recellularised before implantation, and cellularisation techniques will be extensively discussed.

8.
J Mech Behav Biomed Mater ; 139: 105671, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682172

RESUMO

Decellularised porcine superflexor tendon (pSFT) has been characterised as a suitable scaffold for anterior cruciate ligament replacement, with dimensions similar to hamstring tendon autograft. However, decellularisation of tissues may reduce or damage extracellular matrix components, leading to undesirable biomechanical changes at a whole tissue scale. Although the role of collagen in tendons is well established, the mechanical contribution of glycosaminoglycans (GAGs) is less evident and could be altered by the decellularisation process. In this study, the contribution of GAGs to the tensile and compressive mechanical properties of pSFT was determined and whether decellularisation affected these properties by reducing GAG content or functionality. PSFTs were either enzymatically treated using chondroitinase ABC to remove GAGs or decellularised using previously established methods. Native, GAG-depleted and decellularised pSFT groups were then subjected to quantitative assays and biomechanical characterisation. In tension, specimens underwent stress relaxation and strength testing. In compression, specimens underwent confined compression testing. The GAG-depleted group was found to have circa 86% reduction of GAG content compared to native and decellularised groups. There was no significant difference in GAG content between native (3.75 ± 0.58 µg/mg) and decellularised (3.40 ± 0.37 µg/mg) groups. Stress relaxation testing discovered the time-independent and time-dependent relaxation moduli of the decellularised group were reduced ≥50% compared to native and GAG-depleted groups. However, viscoelastic behaviour of native and GAG-depleted groups resulted similar. Strength testing discovered no differences between native and GAG-depleted group's properties, albeit a reduction ∼20% for decellularised specimens' linear modulus and tensile strength compared to native tissue. In compression testing, the aggregate modulus was found to be circa 74% lower in the GAG-depleted group than the native and decellularised groups, while the zero-strain permeability was significantly higher in the GAG-depleted group (0.86 ± 0.65 mm4/N) than the decellularised group (0.03 ± 0.04 mm4/N). The results indicate that GAGs may significantly contribute to the mechanical properties of pSFT in compression, but not in tension. Furthermore, the content and function of GAGs in pSFTs are unaffected by decellularisation and the mechanical properties of the tissue remain comparable to native tissue.


Assuntos
Glicosaminoglicanos , Tendões , Animais , Suínos , Ligamento Cruzado Anterior , Colágeno , Fenômenos Físicos , Fenômenos Biomecânicos
9.
Biomedicines ; 10(11)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359336

RESUMO

BACKGROUND: In end-stage chronic liver disease, transplantation represents the only curative option. However, the shortage of donors results in the death of many patients. To overcome this gap, it is mandatory to develop new therapeutic options. In the present study, we decellularised pig livers and reseeded them with allogeneic porcine mesenchymal stromal cells (pMSCs) to understand whether extracellular matrix (ECM) can influence and/or promote differentiation into hepatocyte-like cells (HLCs). METHODS: After decellularisation with SDS, the integrity of ECM-scaffolds was examined by histological staining, immunofluorescence and scanning electron microscope. DNA quantification was used to assess decellularisation. pMSCs were plated on scaffolds by static seeding and maintained in in vitro culture for 21 days. At 3, 7, 14 and 21 days, seeded ECM scaffolds were evaluated for cellular adhesion and growth. Moreover, the expression of specific hepatic genes was performed by RT-PCR. RESULTS: The applied decellularisation/recellularisation protocol was effective. The number of seeded pMSCs increased over the culture time points. Gene expression analysis of seeded pMSCs displayed a weak induction due to ECM towards HLCs. CONCLUSIONS: These results suggest that ECM may address pMSCs to differentiate in hepatocyte-like cells. However, only contact with liver-ECM is not enough to induce complete differentiation.

10.
Front Bioeng Biotechnol ; 10: 918690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061430

RESUMO

3D-Bioprinting leads to the realization of tridimensional customized constructs to reproduce the biological structural complexity. The new technological challenge focuses on obtaining a 3D structure with several distinct layers to replicate the hierarchical organization of natural tissues. This work aims to reproduce large blood vessel substitutes compliant with the original tissue, combining the advantages of the 3D bioprinting, decellularization, and accounting for the presence of different cells. The decellularization process was performed on porcine aortas. Various decellularization protocols were tested and evaluated through DNA extraction, quantification, and amplification by PCR to define the adequate one. The decellularized extracellular matrix (dECM), lyophilized and solubilized, was combined with gelatin, alginate, and cells to obtain a novel bioink. Several solutions were tested, tuning the percentage of the components to obtain the adequate structural properties. The geometrical model of the large blood vessel constructs was designed with SolidWorks, and the construct slicing was done using the HeartWare software, which allowed generating the G-Code. The final constructs were 3D bioprinted with the Inkredible + using dual print heads. The composition of the bioink was tuned so that it could withstand the printing of a segment of a tubular construct up to 10 mm and reproduce the multicellular complexity. Among the several compositions tested, the suspension resulting from 8% w/v gelatin, 7% w/v alginate, and 3% w/v dECM, and cells successfully produced the designed structures. With this bioink, it was possible to print structures made up of 20 layers. The dimensions of the printed structures were consistent with the designed ones. We were able to avoid the double bioink overlap in the thickness, despite the increase in the number of layers during the printing process. The optimization of the parameters allowed the production of structures with a height of 20 layers corresponding to 9 mm. Theoretical and real structures were very close. The differences were 14% in height, 20% internal diameter, and 9% thickness. By tailoring the printing parameters and the amount of dECM, adequate mechanical properties could be met. In this study, we developed an innovative printable bioink able to finely reproduce the native complex structure of the large blood vessel.

11.
Biomater Transl ; 3(1): 65-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837344

RESUMO

Bone grafts have traditionally come from four sources: the patients' own tissue (autograft), tissue from a living or cadaveric human donor (allograft), animal donors (xenograft) and synthetic artificial biomaterials (ceramics, cement, polymers, and metal). However, all of these have advantages and drawbacks. The most commercially successful bone grafts so far are allografts, which hold 57% of the current bone graft market; however, disease transmission and scarcity are still significant drawbacks limiting their use. Tissue-engineered grafts have great potential, in which human stem cells and synthetical biomaterials are combined to produce bone-like tissue in vitro, but this is yet to be approved for widespread clinical practice. It is hypothesised that artificial bone allografts can be mass-manufactured to replace conventional bone allografts through refined bone tissue engineering prior to decellularisation. This review article aims to review current literature on (1) conventional bone allograft preparation; (2) bone tissue engineering including the use of synthetic biomaterials as bone graft substitute scaffolds, combined with osteogenic stem cells in vitro; (3) potential artificial allograft manufacturing processes, including mass production of engineered bone tissue, osteogenic enhancement, decellularisation, sterilisation and safety assurance for regulatory approval. From these assessments, a practical route map for mass production of artificial allografts for clinical use is proposed.

12.
Front Bioeng Biotechnol ; 10: 851825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547158

RESUMO

Collagen VI-related dystrophies (COL6-RDs) are a group of rare congenital neuromuscular dystrophies that represent a continuum of overlapping clinical phenotypes that go from the milder Bethlem myopathy (BM) to the severe Ullrich congenital muscular dystrophy, for which there is no effective treatment. Mutations in one of the three Collagen VI genes alter the incorporation of this protein into the extracellular matrix (ECM), affecting the assembly and the structural integrity of the whole fibrillar network. Clinical hallmarks of COL6-RDs are secondary to the ECM disruption and include muscle weakness, proximal joint contractures, and distal hyperlaxity. Although some traits have been identified in patients' ECMs, a correlation between the ECM features and the clinical phenotype has not been established, mainly due to the lack of predictive and reliable models of the pathology. Herein, we engineered a new personalized pre-clinical model of COL6-RDs using cell-derived matrices (CDMs) technology to better recapitulate the complexity of the native scenario. We found that CDMs from COL6-RD patients presented alterations in ECM structure and composition, showing a significantly decreased Collagen VI secretion, especially in the more severe phenotypes, and a decrease in Fibrillin-1 inclusion. Next, we examined the Collagen VI-mediated deposition of Fibronectin in the ECM, finding a higher alignment, length, width, and straightness than in patients with COL6-RDs. Overall, these results indicate that CDMs models are promising tools to explore the alterations that arise in the composition and fibrillar architecture due to mutations in Collagen VI genes, especially in early stages of matrix organization. Ultimately, CDMs derived from COL6-RD patients may become relevant pre-clinical models, which may help identifying novel biomarkers to be employed in the clinics and to investigate novel therapeutic targets and treatments.

13.
Pediatr Surg Int ; 38(5): 665-677, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316841

RESUMO

PURPOSE: Enterocystoplasty is adopted for patients requiring bladder augmentation, but significant long-term complications highlight need for alternatives. We established a protocol for creating a natural-derived bladder extracellular matrix (BEM) for developing tissue-engineered bladder, and investigated its structural and functional characteristics. METHODS: Porcine bladders were de-cellularised with a dynamic detergent-enzymatic treatment using peristaltic infusion. Samples and fresh controls were evaluated using histological staining, ultrastructure (electron microscopy), collagen, glycosaminoglycans and DNA quantification and biomechanical testing. Compliance and angiogenic properties (Chicken chorioallantoic membrane [CAM] assay) were evaluated. T test compared stiffness and glycosaminoglycans, collagen and DNA quantity. p value of < 0.05 was regarded as significant. RESULTS: Histological evaluation demonstrated absence of cells with preservation of tissue matrix architecture (collagen and elastin). DNA was 0.01 µg/mg, significantly reduced compared to fresh tissue 0.13 µg/mg (p < 0.01). BEM had increased tensile strength (0.259 ± 0.022 vs 0.116 ± 0.006, respectively, p < 0.0001) and stiffness (0.00075 ± 0.00016 vs 0.00726 ± 0.00216, p = 0.011). CAM assay showed significantly increased number of convergent allantoic vessels after 6 days compared to day 1 (p < 0.01). Urodynamic studies showed that BEM maintains or increases capacity and compliance. CONCLUSION: Dynamic detergent-enzymatic treatment produces a BEM which retains structural characteristics, increases strength and stiffness and is more compliant than native tissue. Furthermore, BEM shows angiogenic potential. These data suggest the use of BEM for development of tissue-engineered bladder for patients requiring bladder augmentation.


Assuntos
Engenharia Tecidual , Bexiga Urinária , Animais , Colágeno , Matriz Extracelular , Humanos , Suínos , Engenharia Tecidual/métodos , Bexiga Urinária/cirurgia , Procedimentos Cirúrgicos Urológicos
14.
Expert Rev Mol Med ; 23: e25, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994341

RESUMO

The central nervous system (CNS), consisting of the brain and spinal cord, regulates the mind and functions of the organs. CNS diseases, leading to changes in neurological functions in corresponding sites and causing long-term disability, represent one of the major public health issues with significant clinical and economic burdens worldwide. In particular, the abnormal changes in the extracellular matrix under various disease conditions have been demonstrated as one of the main factors that can alter normal cell function and reduce the neuroregeneration potential in damaged tissue. Decellularised extracellular matrix (dECM)-based biomaterials have been recently utilised for CNS applications, closely mimicking the native tissue. dECM retains tissue-specific components, including proteoglycan as well as structural and functional proteins. Due to their unique composition, these biomaterials can stimulate sensitive repair mechanisms associated with CNS damages. Herein, we discuss the decellularisation of the brain and spinal cord as well as recellularisation of acellular matrix and the recent progress in the utilisation of brain and spinal cord dECM.


Assuntos
Materiais Biocompatíveis , Alicerces Teciduais , Matriz Extracelular , Medula Espinal
15.
J Mech Behav Biomed Mater ; 125: 104965, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808451

RESUMO

Tissue engineered bone solutions aim to overcome the limitations of autologous and allogeneic grafts. Decellularised tissues are produced by washing cellular components from human or animal tissue to produce an immunologically safe and biocompatible scaffold, capable of integration following implantation. A decellularisation procedure utilising low concentration sodium dodecyl sulphate (0.1% w/v) was applied to trabecular bone from human femoral heads (FH) and tibial plateaus (TP). Biological (histology, DNA quantification), biomechanical (compression testing) and structural (µCT) comparisons were made between decellularised and unprocessed cellular tissue. Total DNA levels of decellularised FH and TP bone were below 50 ng mg-1 dry tissue weight and nuclear material was removed. No differences were found between cellular and decellularised bone, from each anatomical region, for all the biomechanical and structural parameters investigated. Differences were found between cellular FH and TP and between decellularised FH and TP. Decellularised FH had a higher ultimate compressive stress, Young's modulus and 0.2% proof stress than decellularised TP (p = 0.001, 0.002, 0.001, Mann Whitney U test, MWU). The mineral density of cellular and decellularised TP bone was significantly greater than cellular and decellularised FH bone respectively (cellular: p = 0.001, decellularised: p < 0.001, MWU). The bone volume fraction and trabecular thickness of cellular and decellularised FH bone were significantly greater than cellular and decellularised TP bone respectively (cellular: p = 0.001, 0.005; decellularised: p < 0.001, <0.001, MWU). Characterisation of decellularised trabecular bone from different anatomical regions offers the possibility of product stratification, allowing selection of biomechanical properties to match particular anatomical regions undergoing bone graft procedures.


Assuntos
Transplante Ósseo , Resinas Acrílicas , Aloenxertos , Animais , Humanos
16.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360744

RESUMO

Small diameter (<6 mm) vessel grafts still pose a challenge for scientists worldwide. Decellularised umbilical artery (dUA) remains promising as small diameter tissue engineered vascular graft (TEVG), yet their immunogenicity remains unknown. Herein, we evaluated the host immune responses, with a focus on the innate part, towards human dUA implantation in mice, and confirmed our findings in an ex vivo allogeneic human setup. Overall, we did not observe any differences in the number of circulating white blood cells nor the number of monocytes among three groups of mice (1) dUA patch; (2) Sham; and (3) Mock throughout the study (day -7 to 28). Likewise, we found no difference in systemic inflammatory and anti-inflammatory cytokine levels between groups. However, a massive local remodelling response with M2 macrophages were observed in the dUA at day 28, whereas M1 macrophages were less frequent. Moreover, human monocytes from allogeneic individuals were differentiated into macrophages and exposed to lyophilised dUA to maximize an eventual M1 response. Yet, dUA did not elicit any immediate M1 response as determined by the absence of CCR7 and CXCL10. Together this suggests that human dUA elicits a minimal pro-inflammatory response further supporting its use as a TEVG in an allogeneic setup.


Assuntos
Prótese Vascular , Quimiocina CXCL10/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Receptores CCR7/imunologia , Artérias Umbilicais , Animais , Feminino , Humanos , Camundongos
17.
Front Bioeng Biotechnol ; 9: 660453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150728

RESUMO

There is a clinical need for novel graft materials for the repair of peripheral nerve defects. A decellularisation process has been developed for porcine peripheral nerves, yielding a material with potentially significant advantages over other devices currently being used clinically (such as autografts and nerve guidance conduits). Grafts derived from xenogeneic tissues should undergo sterilisation prior to clinical use. It has been reported that sterilisation methods may adversely affect the properties of decellularised tissues, and therefore potentially negatively impact on the ability to promote tissue regeneration. In this study, decellularised nerves were produced and sterilised by treatment with 0.1% (v/v) PAA, gamma radiation (25-28 kGy) or E Beam (33-37 kGy). The effect of sterilisation on the decellularised nerves was determined by cytotoxicity testing, histological staining, hydroxyproline assays, uniaxial tensile testing, antibody labelling for collagen type IV, laminin and fibronectin in the basal lamina, and differential scanning calorimetry. This study concluded that decellularised nerves retained biocompatibility following sterilisation. However, sterilisation affected the mechanical properties (PAA, gamma radiation), endoneurial structure and basement membrane composition (PAA) of decellularised nerves. No such alterations were observed following E Beam treatment, suggesting that this method may be preferable for the sterilisation of decellularised porcine peripheral nerves.

18.
J Tissue Eng ; 12: 2041731420987529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854749

RESUMO

Human saphenous vein (hSV) and synthetic grafts are commonly used conduits in vascular grafting, despite high failure rates. Decellularising hSVs (D-hSVs) to produce vascular scaffolds might be an effective alternative. We assessed the effectiveness of a detergent-based method using 0% to 1% sodium dodecyl sulphate (SDS) to decellularise hSV. Decellularisation effectiveness was measured in vitro by nuclear counting, DNA content, residual cell viability, extracellular matrix integrity and mechanical strength. Cytotoxicity was assessed on human and porcine cells. The most effective SDS concentration was used to prepare D-hSV grafts that underwent preliminary in vivo testing using a porcine carotid artery replacement model. Effective decellularisation was achieved with 0.01% SDS, and D-hSVs were biocompatible after seeding. In vivo xeno-transplantation confirmed excellent mechanical strength and biocompatibility with recruitment of host cells without mechanical failure, and a 50% patency rate at 4-weeks. We have developed a simple biocompatible methodology to effectively decellularise hSVs. This could enhance vascular tissue engineering toward future clinical applications.

19.
Acta Biomater ; 122: 249-262, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444799

RESUMO

This paper reports the first comprehensive data set on the anisotropic mechanical properties of isolated endo- and perimysial extracellular matrix of skeletal muscle, and presents the corresponding protocols for preparing and testing the samples. In particular, decellularisation of porcine skeletal muscle is achieved with caustic soda solution, and mechanical parameters are defined based on compressive and tensile testing in order to identify the optimal treatment time such that muscle fibres are dissolved whereas the extracellular matrix remains largely intact and mechanically functional. At around 18 h, a time window was found and confirmed by histology, in which axial tensile experiments were performed to characterise the direction-dependent mechanical response of the extracellular matrix samples, and the effect of lateral pre-compression was studied. The typical, large variability in the experimental stress response could be largely reduced by varying a single scalar factor, which was attributed to the variation of the fraction of extracellular matrix within the tissue. While experimental results on the mechanical properties of intact muscle tissue and single muscle fibres are increasingly available in literature, there is a lack of information on the properties of the collagenous components of skeletal muscle. The present work aims at closing this gap and thus contributes to an improved understanding of the mechanics of skeletal muscle tissue and provides a missing piece of information for the development of corresponding constitutive and computational models.


Assuntos
Matriz Extracelular , Músculo Esquelético , Animais , Fenômenos Biomecânicos , Fibras Musculares Esqueléticas , Estresse Mecânico , Suínos
20.
EBioMedicine ; 64: 103196, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33483297

RESUMO

BACKGROUND: In spite of advances in the treatment of cartilage defects using cell and scaffold-based therapeutic strategies, the long-term outcome is still not satisfying since clinical scores decline years after treatment. Scaffold materials currently used in clinical settings have shown limitations in providing suitable biomechanical properties and an authentic and protective environment for regenerative cells. To tackle this problem, we developed a scaffold material based on decellularised human articular cartilage. METHODS: Human articular cartilage matrix was engraved using a CO2 laser and treated for decellularisation and glycosaminoglycan removal. Characterisation of the resulting scaffold was performed via mechanical testing, DNA and GAG quantification and in vitro cultivation with adipose-derived stromal cells (ASC). Cell vitality, adhesion and chondrogenic differentiation were assessed. An ectopic, unloaded mouse model was used for the assessment of the in vivo performance of the scaffold in combination with ASC and human as well as bovine chondrocytes. The novel scaffold was compared to a commercial collagen type I/III scaffold. FINDINGS: Crossed line engravings of the matrix allowed for a most regular and ubiquitous distribution of cells and chemical as well as enzymatic matrix treatment was performed to increase cell adhesion. The biomechanical characteristics of this novel scaffold that we term CartiScaff were found to be superior to those of commercially available materials. Neo-tissue was integrated excellently into the scaffold matrix and new collagen fibres were guided by the laser incisions towards a vertical alignment, a typical feature of native cartilage important for nutrition and biomechanics. In an ectopic, unloaded in vivo model, chondrocytes and mesenchymal stromal cells differentiated within the incisions despite the lack of growth factors and load, indicating a strong chondrogenic microenvironment within the scaffold incisions. Cells, most noticeably bone marrow-derived cells, were able to repopulate the empty chondrocyte lacunae inside the scaffold matrix. INTERPRETATION: Due to the better load-bearing, its chondrogenic effect and the ability to guide matrix-deposition, CartiScaff is a promising biomaterial to accelerate rehabilitation and to improve long term clinical success of cartilage defect treatment. FUNDING: Austrian Research Promotion Agency FFG ("CartiScaff" #842455), Lorenz Böhler Fonds (16/13), City of Vienna Competence Team Project Signaltissue (MA23, #18-08).


Assuntos
Cartilagem Articular/metabolismo , Matriz Extracelular/metabolismo , Lasers de Gás , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Biomarcadores , Bovinos , Adesão Celular , Diferenciação Celular , Condrogênese , Regeneração Tecidual Guiada/métodos , Humanos , Imuno-Histoquímica , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA