Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.478
Filtrar
1.
Ecol Lett ; 27(9): e14510, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39354890

RESUMO

Deep-pelagic fishes are among the most abundant vertebrates on Earth. They play a critical role in sequestering carbon, providing prey for harvestable fishing stocks and linking oceanic layers and trophic levels. However, knowledge of these fishes is scarce and fragmented, hampering the ability of both the scientific community and stakeholders to address them effectively. While modelling approaches incorporating these organisms have advanced, they often oversimplify their functional and ecological diversity, potentially leading to misconceptions. To address these gaps, this synthesis examines the biodiversity and ecology of global deep-pelagic fishes. We review pelagic ecosystem classifications and propose a new semantic framework for deep-pelagic fishes. We evaluate different sampling methods, detailing their strengths, limitations and complementarities. We provide an assessment of the world's deep-pelagic fishes comprising 1554 species, highlighting major groups and discussing regional variability. By describing their morphological, behavioural and ecological diversity, we show that these organisms are far from homogeneous. Building on this, we call for a more realistic approach to the ecology of deep-pelagic fishes transitioning between very different ecological niches during diel vertical migrations. To facilitate this, we introduce the concept of 'diel-modulated realised niche' and propose a conceptual model synthesising the multiple drivers responsible for such transitions.


Assuntos
Biodiversidade , Ecossistema , Peixes , Animais , Peixes/fisiologia
2.
ACS Synth Biol ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39353593

RESUMO

Artificial cells with reconstructed cellular functions could serve as practical protocell models for studying the early cellular life on the Earth. Investigating the viability of protocell models in extreme environments where life may have arisen is important for advancing origin-of-life research. Here, we tested the survivability of lipid membrane vesicles in deep-sea environments. The vesicles were submerged in the deep-sea floor with a human-occupied vehicle. Although most of the vesicles were broken, some vesicles maintained a spherical shape after the dives. When a cell-free protein synthesis system was encapsulated inside, a few vesicles remained even after a 1,390 m depth dive. Interestingly, such artificial cells could subsequently synthesize protein in a nutrient-rich buffer solution. Together with on shore experiments showing artificial cells synthesized protein under high pressure, our results suggest artificial cells may be able to express genes in deep-sea environments where thermal energy is available from hydrothermal vents.

3.
Mar Pollut Bull ; 208: 117052, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39357372

RESUMO

Permanently cold deep-sea sediments (2500-3500 m water depth) with and without indications of thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and potential of cold-adapted aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep sediments removed aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) more readily. Naphtha-driven aerobic respiration was more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that responded less rapidly. In all cases, enrichment of Gammaproteobacteria included lineages of Oleispira, Pseudomonas, and Alteromonas known to be associated with marine oil spills. On the other hand, taxa known to be prevalent in situ and diagnostic for thermogenic hydrocarbon seepage in deep sea sediment, did not respond to naphtha amendment. This suggests a limited role for these prevalent seep-associated populations in the context of aerobic hydrocarbon biodegradation.

4.
FEMS Microbiol Ecol ; 100(10)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39271469

RESUMO

Plasmids are one of the key drivers of microbial adaptation and evolution. However, their diversity and role in adaptation, especially in extreme environments, remains largely unexplored. In this study, we aimed to identify, characterize, and compare plasmid sequences originating from samples collected from deep-sea hydrothermal vents located in Arctic Mid-Ocean Ridges. To achieve this, we employed, and benchmarked three recently developed plasmid identification tools-PlasX, GeNomad, and PLASMe-on metagenomic data from this unique ecosystem. To date, this is the first direct comparison of these computational methods in the context of data from extreme environments. Upon recovery of plasmid contigs, we performed a multiapproach analysis, focusing on identifying taxonomic and functional biases within datasets originating from each tool. Next, we implemented a majority voting system to identify high-confidence plasmid contigs, enhancing the reliability of our findings. By analysing the consensus plasmid sequences, we gained insights into their diversity, ecological roles, and adaptive significance. Within the high-confidence sequences, we identified a high abundance of Pseudomonadota and Campylobacterota, as well as multiple toxin-antitoxin systems. Our findings ensure a deeper understanding of how plasmids contribute to shaping microbial communities living under extreme conditions of hydrothermal vents, potentially uncovering novel adaptive mechanisms.


Assuntos
Fontes Hidrotermais , Metagenômica , Plasmídeos , Plasmídeos/genética , Fontes Hidrotermais/microbiologia , Regiões Árticas , Água do Mar/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota/genética , Noruega , Oceanos e Mares , Metagenoma
5.
Chem Biodivers ; : e202401858, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225066

RESUMO

Two new phthalide derivatives, namely bialowalides A (1) and B (8), and one new isochromanone analogue biourgalide C (11), together with 8 known phthalides (2‒7, 9, and 10) as well as two known isochromanones (12 and 13) were discovered from the EtOAc extract of the deep-sea-derived fungus Penicillium bialowiezense A3. The structures were resolved on the basis of extensive spectroscopic analyses (NMR and HRESIMS data), in association with the modified Mosher's method and ECD data for the determination of the absolute configurations. All isolated secondary metabolites (1‒13) were tested for their antiviral activities against the SARS-CoV-2 trVLP pseudovirus at a concentration of 25 µM. As a result, compounds 1, 5, 11, and 12 exhibited the inhibitory effects against the luminescence at 46.2%, 39.6%, 45.5%, and 48.8%, respectively.

6.
Conserv Biol ; : e14368, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225250

RESUMO

Accelerating rate of human impact and environmental change severely affects marine biodiversity and increases the urgency to implement the Convention on Biological Diversity (CBD) 30×30 plan for conserving 30% of sea areas by 2030. However, area-based conservation targets are complex to identify in a 3-dimensional (3D) ocean where deep-sea features such as seamounts have been seldom studied mostly due to challenging methodologies to implement at great depths. Yet, the use of emerging technologies, such as environmental DNA combined with modern modeling frameworks, could help address the problem. We collected environmental DNA, echosounder acoustic, and video data at 15 seamounts and deep island slopes across the Coral Sea. We modeled 7 fish community metrics and the abundances of 45 individual species and molecular operational taxonomic units (MOTUs) in benthic and pelagic waters (down to 600-m deep) with boosted regression trees and generalized joint attribute models to describe biodiversity on seamounts and deep slopes and identify 3D protection solutions for achieving the CBD area target in New Caledonia (1.4 million km2). We prioritized the identified conservation units in a 3D space, based on various biodiversity targets, to meet the goal of protecting at least 30% of the spatial domain, with a focus on areas with high biodiversity. The relationship between biodiversity protection targets and the spatial area protected by the solution was linear. The scenario protecting 30% of each biodiversity metric preserved almost 30% of the considered spatial domain and accounted for the 3D distribution of biodiversity. Our study paves the way for the use of combined data collection methodologies to improve biodiversity estimates in 3D structured marine environments for the selection of conservation areas and for the use of biodiversity targets to achieve area-based international targets.


Planeación tridimensional de la conservación de las medidas de biodiversidad de peces para lograr el objetivo de conservación 30x30 de mar profundo Resumen El impacto antropogénico y el cambio ambiental acelerados afectan gravemente a la biodiversidad marina y aumentan la urgencia de aplicar el plan 30x30 del Convenio sobre la Diversidad Biológica (CDB) para conservar el 30% de las zonas marinas para el 2030. Sin embargo, la identificación de objetivos de conservación basados en zonas es compleja en un océano tridimensional (3D) en el que rara vez se han estudiado las características de las profundidades marinas, como los montes marinos, sobre todo por la dificultad de aplicar metodologías a grandes profundidades. No obstante, el uso de tecnologías emergentes, como el ADN ambiental combinado con marcos actuales de modelación, podría ayudar a resolver el problema. Recopilamos datos de ADN ambiental, acústica de ecosonda y video en 15 montes marinos y taludes de islas profundas del mar del Coral. Modelamos siete medidas de comunidades de peces y 45 abundancias de especies individuales y unidades taxonómicas moleculares (UTOM) en aguas bentónicas y pelágicas (hasta 600 m de profundidad) con árboles de regresión reforzada (ARR) y modelos de atributos conjuntos generalizados (MACJ) para describir la biodiversidad en los montes marinos y taludes profundos e identificar soluciones de protección en 3D para alcanzar el objetivo de área del CDB en Nueva Caledonia (1.4 millones de km2). Priorizamos las unidades de conservación identificadas en un espacio 3D con base en varios objetivos de biodiversidad para cumplir el objetivo de proteger al menos el 30% del dominio espacial con un enfoque en las zonas con una gran biodiversidad. La relación entre los objetivos de protección de la biodiversidad y el área espacial protegida por la solución fue lineal. El escenario que protegía el 30% de cada medida de biodiversidad preservó casi el 30% del dominio espacial considerado y consideró la distribución tridimensional de la biodiversidad. Nuestro estudio prepara el camino para el uso de metodologías combinadas de recopilación de datos con el fin de mejorar las estimaciones de biodiversidad en entornos marinos estructurados en 3D para la selección de áreas de conservación y para el uso de objetivos de biodiversidad con el fin de alcanzar objetivos internacionales basados en áreas.

7.
Front Microbiol ; 15: 1390451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234539

RESUMO

Introduction: Hydrothermal vents, rich in heavy metals, provided a unique niche for heavy metal resistant microbes. However, knowledge about copper resistant microbes in deep sea hydrothermal vents is still limited. Methods: The copper-resistant bacteria were isolated from deep-sea hydrothermal vent samples and conducted thorough physical, phylogenetic, and genomic analyses to elucidate their copper resistance capability and related genes. Results: Twelve highly copper-resistant bacteria (up to 6-10 mM) were isolated from deep sea hydrothermal fields They were affiliated with the Pseudoalteromonas (4), Marinobacter (3), Halomonas (2), Psychrobacter (1), and Pseudomonas (1) genus in the α-Proteobacteria, and the Sphingomonas (1) genus in the ß-Proteobacteria. The presence of copper in the medium obviously induced the amount of polysaccharides and proteins in the crude extracellular polymeric substances (EPS) produced by Halomonas sp. CuT 3-1, Pseudoalteromonas sp. CuT 4-3 and Marinobacter metalliresistant CuT 6, which could absorb 40 to 50 mg•g-1 copper. We further described a novel species, Marinobacter metalliresistant sp. nov. CuT 6T, which exhibited a higher copper resistance and encoded more heavy metal resistance-related genes than other Marinobacter species. Discussion: It revealed that the copper resistance capability exhibited by these strains in hydrothermal fields is likely attributed to the production of exopolymeric substances, such as polysaccharides and proteins, as well as active transport or efflux mechanisms for heavy metals.

8.
J Fish Biol ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287076

RESUMO

Holtbyrnia anomala is a bathypelagic platytroctid widely distributed in the Atlantic Ocean. In this contribution, we report, for the first time, the occurrence of this species in the tropical southwest Atlantic. A single specimen was collected in 2000 on the continental slope off Rio de Janeiro, Brazil, at an average depth of 1158 m. This report also represents the first record of Holtbyrnia anomala in the Brazilian Economic Exclusive Zone.

9.
Sci Total Environ ; 952: 175968, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226952

RESUMO

With increasing socio-economic importance of the rare earth elements and yttrium (REY), Norway has laid out plans for REY mining, from land-based to deep-sea mining, thereby enhancing REY mobility in the marine ecosystem. Little is known about associated environmental consequences, especially in the deep ocean. We explored the toxicity and modes of action of a light (Nd), medium (Gd) and heavy (Yb) REY-Cl3 at four concentrations (3, 30, 300, and 3000 µg L-1) in the Arcto-boreal deep-sea amphipod Tmetonyx cicada. At the highest concentration, REY solubility was limited and increased with atomic weight (Nd < Gd < Yb). Lethal effects were practically restricted to this treatment, with the lighter elements being more acutely toxic than Yb (from ∼50 % mortality in the Gd-group at dissolved 689-504 µg L-1 to <20 % in the Yb-group at ca. 2000 µg L-1), which could be a function of bioavailability. All three REY induced hyperactivity at the low-medium concentrations. Delving into the transcriptome of T. cicada allowed us to determine a whole array of potential (neurotoxic) mechanisms underlying this behaviour. Gd induced the vastest response, affecting serotonin-synthesis; sphingolipid-synthesis; the renin-angiotensin system; mitochondrial and endoplasmic reticulum functioning (Gd, Nd); and lysosome integrity (Gd, Yb); as well as the expression of hemocyanin, potentially governing REY-uptake (Gd, Yb). While Nd and Yb shared only few pathways, suggesting a link between mode of action and atomic weight/radius, almost all discussed mechanisms imply the disruption of organismal Ca-homeostasis. Despite only fragmental genomic information available for crustaceans to date, our results provide novel insight into the toxicophysiology of REY in marine biota. The neurotoxic/behavioural effects in T. cicada at concentrations with potential environmental relevance warn about the possibility of bottom-up ecological consequences in mining exposed fjords and deep-sea ecosystems, calling for follow-up studies and regulatory measures prior to the onset of REY mining in Norway.


Assuntos
Anfípodes , Metais Terras Raras , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Anfípodes/fisiologia , Metais Terras Raras/toxicidade , Noruega , Comportamento Animal/efeitos dos fármacos
10.
J Hazard Mater ; 480: 135760, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39259999

RESUMO

Chlorinated paraffins (CPs) and microplastics (MPs) are commonly found in deep-sea cold seep sediments, where nitrogen cycling processes frequently occur. However, little is known about their combined effects on sedimentary microbial communities and nitrogen cycling in these environments. This study aimed to investigate the synergistic impacts of CPs and MPs on microbial communities and nitrogen cycling in deep-sea cold seep sediments through microcosm experiments. Our results demonstrated that the presence of CPs and MPs induced significant alterations in microbial community composition, promoting the growth of Halomonas. Furthermore, CPs and MPs were found to enhance nitrification, denitrification and anammox processes, which was evidenced by the higher abundance of genes associated with nitrification and denitrification, as well as increased activity of denitrification and anammox in the CPs and MPs-treatment groups compared to the control group. Additionally, the enhanced influence of CPs and MPs on denitrification was expected to promote nitrate-dependent and sulfate-dependent anaerobic oxidation of methane, thereby resulting in less methane released into the environment. These findings shed light on the potential consequences of simultaneous exposure to CPs and MPs on biogeochemical nitrogen cycling in deep-sea cold seep sediments.

11.
Mitochondrial DNA B Resour ; 9(9): 1243-1247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301045

RESUMO

The complete mitochondrial genome of Paragorgia papillata Li et al. 2021, a deep-sea gorgonian inhabiting at 858 m in Caroline Ridge, was obtained in this study. The length of the mitochondrial genome is 19,018 bp with 14 protein coding genes, one transfer RNA (tRNA-Met) and two ribosomal RNA genes contained in this circular molecule. Phylogenetic analysis indicated that P. papillata and P. coralloides Bayer, 1993 were two closely related species, and a total of 26 mutational sites (four nonsynonymous mutations included) can be detected between their mitochondrial genomes. This exhibits a case that mitochondrial genomes can be applied to differentiate closely related species in gorgonians. The phylogenetic tree constructed with mitochondrial genomes showed that the families in Octocorallia are reciprocally monophyletic, provided that the family names were revised according to the systematic revision of Octocorallia guided by phylogenomics. However, the relationships of the families within each order were different between the previous phylogenomic work and ours. Integrating mitochondrial genomes from a wider array of Octocorallia families is essential for a more accurate comparison of phylogenies derived from nuclear and mitochondrial sequences in future study.

12.
J Environ Manage ; 369: 122343, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39226805

RESUMO

In the context of a global shift towards low-carbon energy systems, this paper provides an in-depth analysis of deep-sea mining's (DSM) potential role in enhancing global energy security. Addressing the growing demand for critical minerals essential for clean energy technologies, electric vehicles (EVs), and energy storage systems, the paper examines how DSM can diversify the global mineral supply and reduce reliance on geopolitically sensitive sources. It explores DSM's capacity to recalibrate energy prices, influence the competitive landscape of clean energy technologies, and shift geopolitical dynamics. The paper delves into the multi-faceted impacts of DSM on energy security, including geopolitical shifts, supply chain diversification, and environmental trade-offs. By providing a holistic view that links mineral supply security to sustainable energy transitions, this study extends beyond prior research focused mainly on the technical and environmental aspects of DSM. The findings illustrate DSM's intersection with international politics, its effect on energy pricing strategies, and the balance between resource exploitation and environmental stewardship. Strategic policy recommendations are offered to optimize DSM's benefits while minimizing its ecological impacts, aligning the emerging DSM industry with global sustainability goals. In addition to identifying challenges, the paper proposes actionable solutions, contributing a unique perspective to the discourse on DSM and energy security.


Assuntos
Mineração , Conservação dos Recursos Naturais
13.
Proc Biol Sci ; 291(2030): 20240823, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39255840

RESUMO

Most deep-ocean life relies on organic carbon from the surface ocean. While settling primary production rapidly attenuates in the water column, pulses of organic material can be quickly transported to depth in the form of food falls. One example of fresh material that can reach great depths across the tropical Atlantic Ocean and Caribbean Sea is the pelagic macroalgae Sargassum. However, little is known about the deep-ocean organisms able to use this food source. Here, we encountered the isopod Bathyopsurus nybelini at depths 5002-6288 m in the Puerto Rico Trench and Mid-Cayman Spreading Center using the Deep Submergence Vehicle Alvin. In most of the 32 observations, the isopods carried fronds of Sargassum. Through an integrative suite of morphological, DNA sequencing, and microbiological approaches, we show that this species is adapted to feed on Sargassum by using a specialized swimming stroke, having serrated and grinding mouthparts, and containing a gut microbiome that provides a dietary contribution through the degradation of macroalgal polysaccharides and fixing nitrogen. The isopod's physiological, morphological, and ecological adaptations demonstrate that vertical deposition of Sargassum is a direct trophic link between the surface and deep ocean and that some deep-sea organisms are poised to use this material.


Assuntos
Isópodes , Sargassum , Sargassum/fisiologia , Isópodes/fisiologia , Animais , Oceano Atlântico , Porto Rico , Comportamento Alimentar , Microbioma Gastrointestinal , Cadeia Alimentar , Região do Caribe
14.
Environ Sci Pollut Res Int ; 31(44): 56253-56271, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264497

RESUMO

Studies on dinoflagellate cysts in the Arabian Sea (AS) are limited to the coastal waters, but no information from the deeper depths. The dinoflagellate cyst assemblages in surface sediment samples (0-2 cm) from the deeper depths (up to ~ 4500 m) of central (oxygen minimum zone (OMZ)) and southeastern (oligotrophic) AS revealed that the relatively good numbers of cyst concentrations reach deeper depths of OMZ (3505 m) and oligotrophic (4368 m) regions, but the former harbored more cyst concentrations than the latter. The cyst concentration and species count (including HAB species) recorded here are lower compared to the eastern (EAS) and western (WAS) AS, but the autotrophic cyst dominance (74-83%) at deeper depths is in contrast with the heterotrophic dominance in coastal AS. Of the recorded 41 cyst species (belonging to 18 genera), four species (cyst of Cladopyxis sp., Operculodinium janduchenei, Stelladinium bifurcatum, and Protoperidinium monospinum) from the deepest part of oligotrophic AS form the first report. In contrast, Spiniferites and Lingulodinium cysts were common occurrences. Taxonomic comparison with literature revealed (i) the prevalence of more cosmopolitan species (32 species) which could be due to the prevalence of large and small-scale lateral transport of cysts in oligotrophic regions followed by OMZ and coastal regions, respectively, and (ii) very few region-specific species, i.e., cyst of Protoperidinium latissimum, Lejeunecysta sabrina, cyst of Protoperidinium denticulatum in EAS and Impagidinium patulum, and I. strialatum, in WAS. Interestingly, variability in the morphometry was evident between the coastal and open oceans in some cosmopolitan cysts, e.g., Operculodinium centrocarpum and Lingulodinium machaerophorum. These findings from the less studied pelagic regions will contribute to the growing knowledge of dinoflagellate cyst distribution patterns and highlight the significance of cyst taxa and morphology as potential ecological indicators for AS.


Assuntos
Dinoflagellida , Sedimentos Geológicos , Oceanos e Mares
15.
Mov Ecol ; 12(1): 65, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39313840

RESUMO

BACKGROUND: In ecosystems influenced by strong seasonal variation in insolation, the fitness of diverse taxa depends on seasonal movements to track resources along latitudinal or elevational gradients. Deep pelagic ecosystems, where sunlight is extremely limited, represent Earth's largest habitable space and yet ecosystem phenology and effective animal movement strategies in these systems are little understood. Sperm whales (Physeter macrocephalus) provide a valuable acoustic window into this world: the echolocation clicks they produce while foraging in the deep sea are the loudest known biological sounds on Earth and convey detailed information about their behavior. METHODS: We analyze seven years of continuous passive acoustic observations from the Central California Current System, using automated methods to identify both presence and demographic information from sperm whale echolocation clicks. By integrating empirical results with individual-level movement simulations, we test hypotheses about the movement strategies underlying sperm whales' long-distance movements in the Northeast Pacific. RESULTS: We detect foraging sperm whales of all demographic groups year-round in the Central California Current System, but also identify significant seasonality in frequency of presence. Among several previously hypothesized movement strategies for this population, empirical acoustic observations most closely match simulated results from a population undertaking a "seasonal resource-tracking migration", in which individuals move to track moderate seasonal-latitudinal variation in resource availability. DISCUSSION: Our findings provide evidence for seasonal movements in this cryptic top predator of the deep sea. We posit that these seasonal movements are likely driven by tracking of deep-sea resources, based on several lines of evidence: (1) seasonal-latitudinal patterns in foraging sperm whale detection across the Northeast Pacific; (2) lack of demographic variation in seasonality of presence; and (3) the match between simulations of seasonal resource-tracking migration and empirical results. We show that sperm whales likely track oceanographic seasonality in a manner similar to many surface ocean predators, but with dampened seasonal-latitudinal movement patterns. These findings shed light on the drivers of sperm whales' long-distance movements and the shrouded phenology of the deep-sea ecosystems in which they forage.

16.
Mitochondrial DNA B Resour ; 9(9): 1263-1267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323658

RESUMO

The complete mitochondrial genome of Leptychaster arcticus, deep-sea inhabited asteroid, was examined in this study. The complete mitogenome of L. arcticus is 16,253 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, and two ribosomal RNA genes. No gene rearrangements or deletions were observed in compared to other Paxillosida. The ND4L and ND3 genes have 'ATT' as its start codon, which is a feature that has been found in previous echinoderm mitochondrial studies. In the ML tree analysis based on the superorder Valvatacea, it was difficult to establish the molecular phylogenetic relationship at lower taxonomic levels, such as order and family, due to the lack of asteroid molecular data available. Therefore, we expect to contribute to the expansion of the data and determine the phylogenetic positioning in future studies.

17.
Microorganisms ; 12(9)2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39338575

RESUMO

Nitrogen-cycling processes in the deep sea remain understudied. This study investigates the distribution of nitrogen-cycling microbial communities in the deep-sea surface sediments of the western South China Sea, using metagenomic sequencing and real-time fluorescent quantitative PCR techniques to analyze their composition and abundance, and the effects of 11 environmental parameters, including NH4+-N, NO3--N, NO2--N, PO43--P, total nitrogen (TN), total organic carbon (TOC), C/N ratio, pH, electrical conductivity (EC), SO42-, and Cl-. The phylum- and species-level microbial community compositions show that five sites can be grouped as a major cluster, with sites S1 and S9 forming a sub-cluster, and sites S13, S19, and S26 forming the other; whereas sites S3 and S5 constitute a separate cluster. This is also evident for nitrogen-cycling functional genes, where their abundance is influenced by distinct environmental conditions, including water depths (shallower at sites S1 and S9 against deeper at sites S13, S19, and S26) and unique geological features (sites S3 and S5), whereas the vertical distribution of nitrogen-cycling gene abundance generally shows a decreasing trend against sediment depth. Redundancy analysis (RDA) exploring the correlation between the 11 environmental parameters and microbial communities revealed that the NO2--N, C/N ratio, and TN significantly affect microbial community composition (p < 0.05). This study assesses the survival strategies of microorganisms within deep-sea surface sediments and their role in the marine nitrogen cycle.

18.
Microbes Environ ; 39(3)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39343535

RESUMO

Deep-sea massive sulfide deposits serve as energy sources for chemosynthetic ecosystems in dark, cold environments even after hydrothermal activity ceases. However, the vertical distribution of microbial communities within sulfide deposits along their depth from the seafloor as well as their ecological roles remain unclear. We herein conducted a culture-independent metagenomic ana-lysis of a core sample of massive sulfide deposits collected in a hydrothermally inactive field of the Southern Mariana Trough, Western Pacific, by drilling (sample depth: 0.52| |m below the seafloor). Based on the gene context of the metagenome-assembled genomes (MAGs) obtained, we showed the metabolic potential of as-yet-uncultivated microorganisms, particularly those unique to the shallow zone rich in iron hydroxides. Some members of Gammaproteobacteria have potential for the oxidation of reduced sulfur species (such as sulfide and thiosulfate) to sulfate coupled to nitrate reduction to ammonia and carbon fixation via the Calvin-Benson-Bassham (CBB) cycle, as the primary producers. The Zetaproteobacteria member has potential for iron oxidation coupled with microaerobic respiration. A comparative ana-lysis with previously reported metagenomes from deeper zones (~2| |m below the seafloor) of massive sulfide deposits revealed a difference in the relative abundance of each putative primary producer between the shallow and deep zones. Our results expand knowledge on the ecological potential of uncultivated microorganisms in deep-sea massive sulfide deposits and provide insights into the vertical distribution patterns of chemosynthetic ecosystems.


Assuntos
Gammaproteobacteria , Metagenoma , Metagenômica , Água do Mar , Sulfetos , Sulfetos/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/classificação , Gammaproteobacteria/isolamento & purificação , Água do Mar/microbiologia , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/química , Filogenia , Ecossistema , Oceano Pacífico , Oxirredução , Microbiota/genética , Ciclo do Carbono
19.
Chem Biodivers ; : e202401751, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140462

RESUMO

Four new compounds, including one drimane sesquiterpene lactone (1), one isocoumarin (2), one coumarin (3), and a new natural product (4), as well as fourteen known compounds were obtained from a deep-sea derived Cladosporium sp. SCSIO 41318. The structures of the new compounds were determined using extensive NMR and HRESIMS spectroscopic analysis, electronic circular dichroism calculations, and single-crystal X-ray diffraction measurements. Biological assays showed that compounds (1, 6, 7, 9-12, 14, 15, 17, 18) exhibited varying degrees of antimicrobial activity against the tested human pathogenic bacteria and plant pathogenic fungi. Besides, penicitrinone A (11) and penicitrinol A (12) displayed weak antitumor activities against the 22Rv1 cell line.

20.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125787

RESUMO

The utility of the mitochondrial genomes (mitogenomes) in analyzing the evolutionary history of animals has been proven. Five deep-sea corals (Bathypathes sp.1, Bathypathes sp.2, Schizopathidae 1, Trissopathes sp., and Leiopathes sp.) were collected in the South China Sea (SCS). Initially, the structures and collinearity of the five deep-sea coral mitogenomes were analyzed. The gene arrangements in the five deep-sea coral mitogenomes were similar to those in the order Antipatharia, which evidenced their conservation throughout evolutionary history. Additionally, to elucidate the slow evolutionary rates in Hexacorallia mitogenomes, we conducted comprehensive analyses, including examining phylogenetic relationships, performing average nucleotide identity (ANI) analysis, and assessing GC-skew dissimilarity combining five deep-sea coral mitogenomes and 522 reference Hexacorallia mitogenomes. Phylogenetic analysis using 13 conserved proteins revealed that species clustered together at the order level, and they exhibited interspersed distributions at the family level. The ANI results revealed that species had significant similarities (identity > 85%) within the same order, while species from different orders showed notable differences (identity < 80%). The investigation of the Hexacorallia mitogenomes also highlighted that the GC-skew dissimilarity was highly significant at the order level, but not as pronounced at the family level. These results might be attributed to the slow evolution rate of Hexacorallia mitogenomes and provide evidence of mitogenomic diversity. Furthermore, divergence time analysis revealed older divergence times assessed via mitogenomes compared with nuclear data, shedding light on significant evolutionary events shaping distinct orders within Hexacorallia corals. Those findings provide new insights into understanding the slow evolutionary rates of deep-sea corals in all lineages of Hexacorallia using their mitogenomes.


Assuntos
Antozoários , Evolução Molecular , Genoma Mitocondrial , Filogenia , Antozoários/genética , Antozoários/classificação , Animais , Composição de Bases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA