Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029472

RESUMO

We report on a photon (~3.08 eV equivalent to 402 nm) controlled optical emission from ZnO (10-10). Under below band gap excitation (~2.33 eV equivalent to ~532 nm), significant photoluminescence (PL) overlapped with Raman response is observed. The broad PL consists of three bands (629 (A), 690 (B), and 751 (C) nm) attributed to the defects arising due to excess zinc and charged oxygen vacancy. By employing a second excitation source at 402 nm, we demonstrate about 50% reduction in the overall PL. We utilize the doubly positive oxygen vacancy state to control the PL emission while transiently reducing its density. .

2.
Adv Mater ; 36(30): e2402219, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843883

RESUMO

Monolayer WTe2 has attracted significant attention for its unconventional superconductivity and topological edge states. However, its air sensitivity poses challenges for studying intrinsic defect structures. This study addresses this issue using a custom-built inert gas interconnected system, and investigate the intrinsic grain boundary (GB) structures of monolayer polycrystalline 1T' WTe2 grown by nucleation-controlled chemical vapor deposition (CVD) method. These findings reveal that GBs in this system are predominantly governed by W-Te rhombi with saturated coordination, resulting in three specific GB prototypes without dislocation cores. The GBs exhibit anisotropic orientations influenced by kinks formed from these fundamental units, which in turn affect the distribution of grains in various shapes within polycrystalline flakes. Scanning tunneling microscopy/spectroscopy (STM/S) analysis further reveals metallic states along the intrinsic 120° twin grain boundary (TGB), consistent with computed band structures. This systematic exploration of GBs in air-sensitive 1T' WTe2 monolayers provides valuable insights into emerging GB-related phenomena.

3.
Small Methods ; : e2400517, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38763921

RESUMO

The defects have a remarkable influence on the electronic structures and the electric transport behaviors of the matter, providing the additional means to engineering their physical properties. In this work, a comprehensive study on the effect of Br-vacancies on the electronic structures and transport behaviors in the high-order topological insulator Bi4Br4 is performed by the combined techniques of the scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and physical properties measurement system along with the first-principle calculations. The STM results show the defects on the cleaved surface of a single crystal and reveal that the defects are correlated to the Br-vacancies with the support of the simulated STM images. The role of the Br-vacancies in the modulation of the band structures has been identified by ARPES spectra and the calculated energy-momentum dispersion. The relationship between the Br-vacancies and the semiconducting-like transport behaviors at low temperature has been established, implying a Mott variable ranging hopping conduction in Bi4Br4. The work not only resolves the unclear transport behaviors in this matter, but also paves a way to modulate the electric conduction path by the defects engineering.

4.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668147

RESUMO

Due to current issues of energy-level mismatch and low transport efficiency in commonly used electron transport layers (ETLs), such as TiO2 and SnO2, finding a more effective method to passivate the ETL and perovskite interface has become an urgent matter. In this work, we integrated a new material, the ionic liquid (IL) hexylammonium acetate (HAAc), into the SnO2/perovskite interface to improve performance via the improvement of perovskite quality formed by the two-step method. The IL anions fill oxygen vacancy defects in SnO2, while the IL cations interact chemically with Pb2+ within the perovskite structure, reducing defects and optimizing the morphology of the perovskite film such that the energy levels of the ETL and perovskite become better matched. Consequently, the decrease in non-radiative recombination promotes enhanced electron transport efficiency. Utilizing HAAc, we successfully regulated the morphology and defect states of the perovskite layer, resulting in devices surpassing 24% efficiency. This research breakthrough not only introduces a novel material but also propels the utilization of ILs in enhancing the performance of perovskite photovoltaic systems using two-step synthesis.

5.
Materials (Basel) ; 17(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591507

RESUMO

In this study, we demonstrated the effective separation of charge carriers within the IGZO/IZO heterostructure by incorporating IZO. We have chosen IGZO for its high mobility and excellent on-off switching behavior in the front channel of our oxide-oxide heterostructure. Similarly, for an additional oxide layer, we have selected IZO due to its outstanding electrical properties. The optimized optoelectronic characteristics of the IGZO/IZO phototransistors were identified by adjusting the ratio of In:Zn in the IZO layer. As a result, the most remarkable traits were observed at the ratio of In:Zn = 8:2. Compared to the IGZO single-layer phototransistor, the IGZO/IZO(8:2) phototransistor showed improved photoresponse characteristics, with photosensitivity and photoresponsivity values of 1.00 × 107 and 89.1 AW-1, respectively, under visible light wavelength illumination. Moreover, the electrical characteristics of the IGZO/IZO(8:2) transistor, such as field effect mobility (µsat) and current on/off ratio (Ion/Ioff), were highly enhanced compared to the IGZO transistor. The µsat and Ion/Ioff were increased by about 2.1 times and 2.3 times, respectively, compared to the IGZO transistor. This work provides an approach for fabricating visible-light phototransistors with elevated optoelectronic properties and low power consumption based on an oxide-oxide heterostructure. The phototransistor with improved performance can be applied to applications such as color-selective visible-light image sensors and biometric sensors interacting with human-machine interfaces.

6.
ACS Appl Mater Interfaces ; 16(13): 16580-16588, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529895

RESUMO

Nonfullerene acceptors (NFAs) have dramatically improved the power conversion efficiency (PCE) of organic photovoltaics (OPV) in recent years; however, their device stability currently remains a bottleneck for further technological progress. Photocatalytic decomposition of nonfullerene acceptor molecules at metal oxide electron transport layer (ETL) interfaces has in several recent reports been demonstrated as one of the main degradation mechanisms for these high-performing OPV devices. While some routes for mitigating such degradation effects have been proposed, e.g., through a second layer integrated on the ETL surface, no clear strategy that complies with device scale-up and application requirements has been presented to date. In this work, it is demonstrated that the development of sputtered titanium oxide layers as ETLs in nonfullerene acceptor based OPV can lead to significantly enhanced device lifetimes. This is achieved by tuning the concentration of defect states at the oxide surface, via the reactive sputtering process, to mitigate the photocatalytic decomposition of NFA molecules at the metal oxide interlayers. Reduced defect state formation at the oxide surface is confirmed through X-ray photoelectron spectroscopy (XPS) studies, while the reduced photocatalytic decomposition of nonfullerene acceptor molecules is confirmed via optical spectroscopy investigations. The PBDB-T:ITIC organic solar cells show power conversion efficiencies of around 10% and significantly enhanced photostability. This is achieved through a reactive sputtering process that is fully scalable and industry compatible.

7.
Nanomicro Lett ; 16(1): 70, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175329

RESUMO

Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M-Nx, M-C2N2, M-O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 "customization", motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.

8.
Heliyon ; 9(11): e21424, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027941

RESUMO

We have estimated the DDS in the STSG [Se78-xTe20Sn2Gex (x = 0, 2, 4, 6)] system by using the Correlated Barrier Hopping (CBH) model by performing A.C. conduction measurements in the frequency range (1 kHz-10 kHz) and temperature underneath the glass transition temperature (303-333) K. The detailed analysis reveals that bi-polaron hopping is a leading conduction mechanism over single-polaron hopping. Further, there is a noticeable reduction in DDS with increasing concentration of Ge beyond the composition x = 2. A close inspection indicates that cross-linking of Se with Ge has an important role in controlling the DDS in terms of the corner/edge sharing configurations in the structural unit of GeSe4 tetrahedral.

9.
Small ; : e2302500, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259673

RESUMO

Defect engineering has been regarded as an "all-in-one strategy" to alleviate the insufficient solar utilization in g-C3 N4 . However, without appropriate modification, the defect benefits will be partly offset due to the formation of deep localized defect states and deteriorated surface states, lowering the photocarrier separation efficiency. To this end, the defective g-C3 N4 is designed with both S dopants and N vacancies via a dual-solvent-assisted synthetic approach. The precise defect control is realized by the addition of ethylene glycol (EG) into precursor formation and molten sulfur into the pyrolysis process, which simultaneously induced g-C3N4. with shallow defect states. These shallow defect energy levels can act as a temporary electron reservoir, which are critical to evoke the migrated electrons from CB with a moderate trapping ability, thus suppressing the bulky photocarrier recombination. Additionally, the optimized surface states of DCN-ES are also demonstrated by the highest electron-trapping resistance (Rtrapping ) of 9.56 × 103 Ω cm2 and the slowest decay kinetics of surface carriers (0.057 s-1 ), which guaranteed the smooth surface charge transfer rather than being the recombination sites. As a result, DCN-ES exhibited a superior H2 evolution rate of 4219.9 µmol g-1 h-1 , which is 29.1-fold higher than unmodified g-C3 N4 .

10.
Materials (Basel) ; 16(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37374523

RESUMO

Tin oxide (SnO2) is a versatile n-type semiconductor with a wide bandgap of 3.6 eV that varies as a function of its polymorph, i.e., rutile, cubic or orthorhombic. In this review, we survey the crystal and electronic structures, bandgap and defect states of SnO2. Subsequently, the significance of the defect states on the optical properties of SnO2 is overviewed. Furthermore, we examine the influence of growth methods on the morphology and phase stabilization of SnO2 for both thin-film deposition and nanoparticle synthesis. In general, thin-film growth techniques allow the stabilization of high-pressure SnO2 phases via substrate-induced strain or doping. On the other hand, sol-gel synthesis allows precipitating rutile-SnO2 nanostructures with high specific surfaces. These nanostructures display interesting electrochemical properties that are systematically examined in terms of their applicability to Li-ion battery anodes. Finally, the outlook provides the perspectives of SnO2 as a candidate material for Li-ion batteries, while addressing its sustainability.

11.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630860

RESUMO

Electrochemical surface-enhanced Raman scattering (EC-SERS) spectroscopy is an ultrasensitive spectro-electrochemistry technique that provides mechanistic and dynamic information on electrochemical interfaces at the molecular level. However, the plasmon-mediated photocatalysis hinders the intrinsic electrochemical behavior of molecules at electrochemical interfaces. This work aimed to develop a facile method for constructing a reliable EC-SERS substrate that can be used to study the molecular dynamics at electrochemical interfaces. Herein, a novel Ag-WO3-x electrochromic heterostructure was synthesized for EC-SERS. Especially, the use of electrochromic WO3-x film suppresses the influence of hot-electrons-induced catalysis while offering a reliable SERS effect. Based on this finding, the real electrochemical behavior of p-aminothiophenol (PATP) on Ag nanoparticles (NPs) surface was revealed for the first time. We are confident that metal-semiconductor electrochromic heterostructures could be developed into reliable substrates for EC-SERS analysis. Furthermore, the results obtained in this work provide new insights not only into the chemical mechanism of SERS, but also into the hot-electron transfer mechanism in metal-semiconductor heterostructures.

12.
ACS Appl Mater Interfaces ; 14(19): 22324-22331, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35532952

RESUMO

The efficiency of metal halide perovskite solar cells (PSCs) has dramatically increased over the past decade (formerly 3.8%, now 25.5%). It has been widely demonstrated that the defects passivation of perovskite photo-active layer plays a vital role in increasing the efficiency and improving the stability of PSCs. In this study, we developed a novel 4,4'-bipiperidine (BiPi)-based organic salt with good stability and successfully introduced this ligand into perovskite for the first time. The embedded BiPi-based organic salt in the 3D perovskites facilitated the formation of two-dimensional-three-dimensional (2D-3D) perovskite materials that passivated the perovskite layer, with a constructive consequence in both photovoltaic performance and device stability. Incorporating this ligand improved the crystallinity of the perovskite materials with reduced defect states, prolonged resolved carrier lifetime, and improved stability. An optimized PSC device exhibited substantially improved device stability and an outstanding power conversion efficiency of 20.03%, with the aid of the BiPi-based organic salt [open-circuit voltage (VOC), 1.10 V; current density (JSC), 23.51 mA/cm2; and fill factor (FF), 0.77], which are 13.0% higher than the original device. Our study provides a ligand design protocol for developing next-generation, highly efficient, stable PSCs.

13.
Appl Radiat Isot ; 186: 110271, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35598564

RESUMO

In case of any natural disasters or technical failures of nuclear facilities, the surrounding media including human beings may receive unexpected radiation exposures. In such a situation, there is no viable way to know how much radiation dose is received by human beings. Realizing that motorized vehicles are parked at fixed but increasing distances within the nuclear installation and industrial environment, this study investigates the kinetic parameters of readily available car windscreens which form the basis to be employed in post-accident dose reconstruction or for retrospective dosimetry. To understand the luminescence features of this crystalline media, a convenient thermoluminescence (TL) technique has been employed. Several well-defined theoretical models and methods were employed to calculate the kinetic parameters including the order of kinetics (b), activation energy (E) or trap depth, frequency factor (s) or escape probability and trap lifetime (τ), by analyzing the glow curves of the irradiated samples. The analysed trapping parameters indicate that the Toyota (E = 0.75-1.31 eV, s = 3.0E+6 - 3.7E+9 (s-1), τ = 6.9E+5 - 1.3E+14 s) and Honda (E = 0.95-1.68 eV, s = 2.1E+10 - 4.1E+13 (s-1), τ = 2.2E+9 - 3.1E+20 s) windscreen offer promising features for conventional TL dosimetry applications, while the obtained longer lifetime (τ = 6.8E+10 - 8.6E+29 s) or higher activation energy (E = 1.23-2.15 eV) for Proton brand windscreen indicates better stability or slow fading of the material, thus suitable for retrospective TL dosimetry. In addition, by assessing the area of deconvoluted micro-Raman spectra of windshield glasses in high-frequency regions, it has been observed the phenomenon of dose-dependent structural alterations and internal annealing of defects. This pattern is also consistent with those cyclical pattern observed in the intensity ratio of defect and graphite modes in the studies of carbon-rich media. Such common phenomena indicate the possibility of using the Raman microspectroscopy as a probe of radiation damage in silica-based media.


Assuntos
Automóveis , Medições Luminescentes , Humanos , Cinética , Medições Luminescentes/métodos , Estudos Retrospectivos , Dosimetria Termoluminescente/métodos
14.
Front Chem ; 10: 835832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35494625

RESUMO

Metal sulphides, including zinc sulphide (ZnS), are semiconductor photocatalysts that have been investigated for the photocatalytic degradation of organic pollutants as well as their activity during the hydrogen evolution reaction and water splitting. However, devising ZnS photocatalysts with a high overall quantum efficiency has been a challenge due to the rapid recombination rates of charge carriers. Various strategies, including the control of size and morphology of ZnS nanoparticles, have been proposed to overcome these drawbacks. In this work, ZnS samples with different morphologies were prepared from zinc and sulphur powders via a facile hydrothermal method by varying the amount of sodium borohydride used as a reducing agent. The structural properties of the ZnS nanoparticles were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques. All-electron hybrid density functional theory calculations were employed to elucidate the effect of sulphur and zinc vacancies occurring in the bulk as well as (220) surface on the overall electronic properties and absorption of ZnS. Considerable differences in the defect level positions were observed between the bulk and surface of ZnS while the adsorption of NaBH4 was found to be highly favourable but without any significant effect on the band gap of ZnS. The photocatalytic activity of ZnS was evaluated for the degradation of rhodamine B dye under UV irradiation and hydrogen generation from water. The ZnS nanoparticles photo-catalytically degraded Rhodamine B dye effectively, with the sample containing 0.01 mol NaBH4 being the most efficient. The samples also showed activity for hydrogen evolution, but with less H2 produced compared to when untreated samples of ZnS were used. These findings suggest that ZnS nanoparticles are effective photocatalysts for the degradation of rhodamine B dyes as well as the hydrogen evolution, but rapid recombination of charge carriers remains a factor that needs future optimization.

15.
Nano Converg ; 9(1): 14, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35316419

RESUMO

Herein, ZnO nanorods were doped with Co and decorated with CoO clusters through an in situ technique to create a CoO/Co-doped ZnO (CO/CZO) heterostructure at low temperatures (150 °C) on a flexible PET substrate. In the CO/CZO heterostructure, the Co dopant has a low energy barrier to substitute Zn atoms and adsorb over oxygen atoms and their vacancies. Therefore, it decreased the charge density (ND = 2.64 × 1019 cm-3) on non-active sites of ZnO and lowered the charge transfer resistance (317 Ω) at Co-doped-ZnO/electrolyte interface by suppressing the native defects and reducing the Schottky barrier height (- 0.35 eV), respectively. Furthermore, CoO clusters induced a p-n heterostructure with Co-doped ZnO, prevented corrosion, increased the active sites for analyte absorption, and increased the ultimate tensile strength (4.85 N m-2). These characteristics enabled the CO/CZO heterostructure to work as a highly sensitive, chemically stable, and flexible pH and glucose oxidation electrode. Therefore, CO/CZO heterostructure was explored for pH monitoring in human fluids and fruit juices, demonstrating a near-Nernst-limit pH sensitivity (52 mV/pH) and fast response time (19 s) in each human fluid and fruit juice. Also, it demonstrated high sensitivity (4656 µM mM-1 cm-2), low limit of detection (0.15 µM), a broad linear range (0.04 mM to 8.85 mM) and good anti-interference capacity towards glucose-sensing. Moreover, it demonstrated excellent flexibility performances, retained 53% and 69% sensitivity of the initial value for pH and glucose sensors, respectively, after 500 bending, stretching, and warping cycles.

16.
ACS Appl Mater Interfaces ; 14(30): 34171-34179, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34460226

RESUMO

The origin of the low densities of electrically active defects in Pb halide perovskite (HaP), a crucial factor for their use in photovoltaics, light emission, and radiation detection, remains a matter of discussion, in part because of the difficulty in determining these densities. Here, we present a powerful approach to assess the defect densities, based on electric field mapping in working HaP-based solar cells. The minority carrier diffusion lengths were deduced from the electric field profile, measured by electron beam-induced current (EBIC). The EBIC method was used earlier to get the first direct evidence for the n-i-p junction structure, at the heart of efficient HaP-based PV cells, and later by us and others for further HaP studies. This manuscript includes EBIC results on illuminated cell cross sections (in operando) at several light intensities to compare optoelectronic characteristics of different cells made by different groups in several laboratories. We then apply a simple, effective single-level defect model that allows deriving the densities (Nr) of the defect acting as recombination center. We find Nr ≈ 1 × 1013 cm-3 for mixed A cation lead bromide-based HaP films and ∼1 × 1014 cm-3 for MAPbBr3(Cl). As EBIC photocurrents are similar at the grain bulk and boundaries, we suggest that the defects are at the interfaces with selective contacts rather than in the HaP film. These results are relevant for photovoltaic devices as the EBIC responses distinguish clearly between high- and low-efficiency devices. The most efficient devices have n-i-p structures with a close-to-intrinsic HaP film, and the selective contacts then dictate the electric field strength throughout the HaP absorber.

17.
ACS Appl Mater Interfaces ; 13(41): 49423-49432, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34628851

RESUMO

Zinc oxide, a wide-band-gap semiconductor, shows intriguing optoelectronic properties when coupled with Ag. Specifically, an absorbance band in the visible range that is not apparent in the separated materials emerges when the interface is formed. Interestingly, photoexcitation of this "interface band" or band-to-band results in a counterintuitive photovoltaic response when a supra/sub-band-gap light is shone. To investigate the origin of this absorbance band and photovoltaic response, we studied in detail the energy-band alignment of ultrathin layers of ZnO (3-60 nm) with Ag. Our analysis indicated that an 'electrostatic potential cliff' is formed within the first 1-2 nm of ZnO. In addition, oxygen vacancies, presumably generated by AgxO-Zn bonds, form mid-gap acceptor states within these first few nm. Both effects facilitate a valence band-to-defect state optical transition that is confined to the interface region. The second type of defects-hole-trap states associated with zinc hydroxide-are spread throughout the ZnO layer and dominate the supra-band-gap photovoltaic response. These findings have potential implications in emerging technologies such as photocatalytic Ag/ZnO heterostructures that will utilize the long-lived charges for chemical work or other optoelectronic applications.

18.
ACS Appl Mater Interfaces ; 13(36): 43540-43553, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472345

RESUMO

Using advanced near-UV photoemission spectroscopy (PES) in constant final state mode (CFSYS) with a very high dynamic range, we investigate the triple-cation lead halide perovskite Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 and gain detailed insights into the density of occupied states (DOS) in the valence band and band gap. A valence band model is established which includes the parabolic valence band edge and an exponentially decaying band tail in a single equation. This allows us to precisely determine two valence band maxima (VBM) at different k-vectors in the angle-integrated spectra, where the highest one, resulting from the VBM at the R-point in the Brillouin zone, is found between -1.50 to -1.37 eV relative to the Fermi energy EF. We investigate quantitatively the formation of defect states in the band gap up to EF upon decomposition of the perovskites during sample transfer, storage, and measurements: during near-UV-based PES, the density of defect states saturates at a value that is around 4 orders of magnitude below the density of states at the valence band edge. However, even short air exposure, or 3 h of X-ray illumination, increased their density by almost a factor of six and ∼40, respectively. Upon prolonged storage in vacuum, the formation of a distinct defect peak is observed. Thus, near-UV CFSYS with modeling as shown here is demonstrated as a powerful tool to characterize the valence band and quantify defect states in lead halide perovskites.

19.
J Phys Condens Matter ; 33(49)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34521076

RESUMO

We studied the role of iso-valent heteroatoms replacing Ti4+cations in the lattice of two titania polymorphs, rutile (r-) and anatase (a-) by means of first principles calculations. The r-TiO2(110) and the a-TiO2(101) surfaces have been considered and Ti ions in the bulk, sub-surface, and surface sites have been replaced with Si, Ge, Sn, Pb, Zr, Hf, and Ce ions: surface or sub-surface sites are clearly preferred. Since the dopants have the same number of valence electrons as the replaced Ti atom, they can have only two effects: one is steric, related to the different size of the dopant compared to Ti4+; the other is an orbital effect, due to the energy levels associated to the dopant not present on the pristine surface. Both these effects can modify locally the geometric and electronic structure of the surface, in particular by introducing new states in the band gap. To check the effect of the dopants on the surface reactivity we studied as an example the decomposition of HCOOH which can follow four different paths with desorption of (a) H2,(b) CO, (c) H2O, or (d) CO2. The results show the very different behavior of the two titania polymorphs considered, rutile and anatase: rutile is more reactive and more easily reduced than anatase. For specular reasons, the presence of the dopants has in general more pronounced effects on anatase, as they can deeply modify the surface reactivity and the HCOOH decomposition path.

20.
Chemistry ; 27(42): 10925-10931, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33998071

RESUMO

The effects of defect states on the fluorescence (FL) and electrochemiluminescence (ECL) properties of graphite phase carbon nitride (g-CN) are systematically investigated for the first time. The g-CN nanosheets (CNNSs) obtained at different condensation temperatures are used as the study models. It can be found that all the CNNSs have two kinds of defect states, one is originated from the edge of CNNSs (labeled as CN-defect) and the other is attributed to the partially carbonization regions (labeled as C-defect). Both two kinds of defect states substantially affect the luminescent properties of CNNSs. Both the FL and ECL signals of CNNSs contain a band gap emission and two defect emissions. For the FL of CNNSs, decreasing the density of defect states can increase efficiently the FL quantum yield, while increasing the density of defect states can make the FL spectra red shift. For the ECL of CNNSs, increasing the density of CN-defect states and decreasing the density of C-defect states are greatly important to improve the ECL activity. This work provides a deep insight into the FL and ECL mechanisms of g-CN, and is of significance in tuning the FL and ECL properties of g-CN. Also, it will greatly promote the applications of CNNSs based on the FL and ECL properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA